Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "RHO-GLOBULIN"
Sort by:
Methylation of the minimal promoter of an embryonic globin gene silences transcription in primary erythroid cells
Methylation of cytosines in the dinucleotide CpG has been shown to suppress transcription of a number of tissue-specific genes, yet the precise mechanism is not fully understood. The vertebrate globin genes were among the first examples in which an inverse correlation was shown between CpG methylation and transcription. We studied the methylation pattern of the 235-bp rho-globin gene promoter in genomic DNA from primary chicken erythroid cells using the sodium bisulfite conversion technique and found all CpGs in the promoter to be methylated in erythroid cells from adult chickens in which the rho-globin gene is silent but unmethylated in 5-day (primitive) embryonic red cells in which the gene is transcribed. To elucidate further the mechanism of methylation-induced silencing, an expression construct consisting of 235 bp of 5' promoter sequence of the rho-globin gene along with a strong 5' erythroid enhancer driving a chloramphenicol acetyltransferase reporter gene, rho-CAT, was transfected into primary avian erythroid cells derived from 5-day embryos. Methylation of just the 235-bp rho-globin gene promoter fragment at every CpG resulted in a 20- to 30-fold inhibition of transcription, and this effect was not overridden by the presence of potent erythroid-specific enhancers. The ability of the 235-bp rho-globin gene promoter to bind to a DNA Methyl Cytosine binding Protein Complex (MeCPC) was tested in electrophoretic mobility shift assays utilizing primary avian erythroid cell nuclear extract. The results were that fully methylated but not unmethylated 235-bp rho-globin gene promoter fragment could compete efficiently for MeCPC binding. These results are a direct demonstration that site-specific methylation of a globin gene promoter at the exact CpGs that are methylated in vivo can silence transcription in homologous primary erythroid cells. Further, these data implicate binding of MeCPC to the promoter in the mechanism of silencing