Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
572 result(s) for "RNA, Circular - blood"
Sort by:
The potential of using blood circular RNA as liquid biopsy biomarker for human diseases
Circular RNA (circRNA) is a novel class of singlestranded RNAs with a closed loop structure. The majority of circRNAs are formed by a back-splicing process in pre-mRNA splicing. Their expression is dynamically regulated and shows spatiotemporal patterns among cell types, tissues and developmental stages. CircRNAs have important biological functions in many physiological processes, and their aberrant expression is implicated in many human diseases. Due to their high stability, circRNAs are becoming promising biomarkers in many human diseases, such as cardiovascular diseases, autoimmune diseases and human cancers. In this review, we focus on the translational potential of using human blood circRNAs as liquid biopsy biomarkers for human diseases. We highlight their abundant expression, essential biological functions and signi cant correlations to human diseases in various components of peripheral blood, including whole blood, blood cells and extracellular vesicles. In addition, we summarize the current knowledge of blood circRNA biomarkers for disease diagnosis or prognosis.
Extracellular Vesicles Long RNA Sequencing Reveals Abundant mRNA, circRNA, and lncRNA in Human Blood as Potential Biomarkers for Cancer Diagnosis
Extracellular vesicles (EVs) contain a rich cargo of different RNA species with specialized functions and clinical applications. However, the landscape and characteristics of extracellular vesicle long RNA (exLR) in human blood remain largely unknown. We presented an optimized strategy for exLR sequencing (exLR-seq) of human plasma. The sample cohort included 159 healthy individuals, 150 patients with cancer (5 cancer types), and 43 patients with other diseases. Bioinformatics approaches were used to analyze the distribution and features of exLRs. Support vector machine algorithm was performed to construct the diagnosis classifier, and diagnostic efficiency was evaluated by ROC analysis. More than 10000 exLRs, including mRNA, circRNA, and lncRNA, were reliably detected in each exLR-seq sample from 1-2 mL of plasma. We observed that blood EVs contain a substantial fraction of intact mRNAs and a large number of assembling spliced junctions; circRNA was also enriched in blood EVs. Interestingly, blood exLRs reflected their tissue origins and the relative fractions of different immune cell types. Additionally, the exLR profile could distinguish patients with cancer from healthy individuals. We further showed that 8 exLRs can serve as biomarkers for hepatocellular carcinoma (HCC) diagnosis with high diagnostic efficiency in training [area under the curve (AUC) = 0.9527; 95% CI, 0.9170-0.9883], validation cohort (AUC = 0.9825; 95% CI, 0.9606-1), and testing cohort (AUC = 0.9627; 95% CI, 0.9263-0.9991). In summary, this study revealed abundant exLRs in human plasma and identified diverse specific markers potentially useful for cancer diagnosis.
Circular RNAs open a new chapter in cardiovascular biology
Circular RNAs (circRNAs) are emerging as a new class of non-coding RNA molecules. This unusual class of RNA species is generated by a back-splicing event of one or two exons, resulting in a covalently closed circRNA molecule. Owing to their circular form, circRNAs are protected from degradation by exonucleases and have greater stability than linear RNA. Advances in computational analysis of RNA sequencing have revealed that thousands of different circRNAs are expressed in a wide range of mammalian tissues, including the cardiovascular system. Moreover, numerous circRNAs are expressed in a disease-specific manner. A great deal of progress has been made in understanding the biogenesis and function of these circRNAs. In this Review, we discuss the current understanding of circRNA biogenesis and function, with a particular emphasis on the cardiovascular system.Circular RNAs (circRNAs) are emerging as a new class of non-coding RNA molecules. In this Review, the authors discuss the current understanding of circRNA biogenesis and function, with a particular emphasis on the cardiovascular system.
Plasma extracellular vesicle long RNA profiling identifies a diagnostic signature for the detection of pancreatic ductal adenocarcinoma
ObjectivePancreatic ductal adenocarcinoma (PDAC) is difficult to diagnose at resectable stage. Recent studies have suggested that extracellular vesicles (EVs) contain long RNAs. The aim of this study was to develop a diagnostic (d-)signature for the detection of PDAC based on EV long RNA (exLR) profiling.DesignWe conducted a case-control study with 501 participants, including 284 patients with PDAC, 100 patients with chronic pancreatitis (CP) and 117 healthy subjects. The exLR profile of plasma samples was analysed by exLR sequencing. The d-signature was identified using a support vector machine algorithm and a training cohort (n=188) and was validated using an internal validation cohort (n=135) and an external validation cohort (n=178).ResultsWe developed a d-signature that comprised eight exLRs, including FGA, KRT19, HIST1H2BK, ITIH2, MARCH2, CLDN1, MAL2 and TIMP1, for PDAC detection. The d-signature showed high accuracy, with an area under the receiver operating characteristic curve (AUC) of 0.960, 0.950 and 0.936 in the training, internal validation and external validation cohort, respectively. The d-signature was able to identify resectable stage I/II cancer with an AUC of 0.949 in the combined three cohorts. In addition, the d-signature showed superior performance to carbohydrate antigen 19-9 in distinguishing PDAC from CP (AUC 0.931 vs 0.873, p=0.028).ConclusionThis study is the first to characterise the plasma exLR profile in PDAC and to report an exLR signature for the detection of pancreatic cancer. This signature may improve the prognosis of patients who would have otherwise missed the curative treatment window.
Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression
Background Increasing evidence has revealed a close relationship between non-coding RNAs and cancer progression. Circular RNAs (circRNAs), a recently identified new member of non-coding RNAs, are demonstrated to participate in diverse biological processes, such as development, homeostatic maintenance and pathological responses. The functions of circRNAs in cancer have drawn wide attention recently. Until now, the expression patterns and roles of circRNAs in hepatocellular carcinoma (HCC) have remained largely unknown. Methods Bioinformatics method was used to screen differentially expressed novel circRNAs in HCC. Northern blotting, qRT-PCR, in situ hybridization (ISH) and RNA-FISH were utilized to analyzed the expression of circRHOT1 in HCC tisues.CCK8, colony formation, EdU assays were used to analyze proliferation of HCC cells. Transwell assay was utilized to analyze HCC cell migration and invasion. FACS was used for apoptosis analysis. Xenograft experiments were used to analyze tumor growth in vivo. Mass spectrum, RNA pulldown, RIP and EMSA was utilized to test the interaction between circRHOT1 and TIP60. RNA-sequencing method was used to analyze the downstream target gene of circRHOT1. Results We identified circRHOT1 (hsa_circRNA_102034) as a conserved and dramatically upregulated circRNA in HCC tissues. HCC patients displaying high circRHOT1 level possessed poor prognosis. Through in vitro and in vivo experiments, we demonstrated circRHOT1 significantly promoted HCC growth and metastasis. Regarding the mechanism, we conducted a RNA pulldown with a biotin-labeled circRHOT1-specific probe and found that circRHOT1 recruited TIP60 to the NR2F6 promoter and initiated NR2F6 transcription. Moreover, NR2F6 knockout inhibited growth, migration and invasion, whereas rescuing NR2F6 in circRHOT1-knockout HCC cells rescued the proliferation and metastasis abilities of HCC cells. Conclusion Taken together, circRHOT1 inhibits HCC development and progression via recruiting TIP60 to initiate NR2F6 expression, indicating that circRHOT1 and NR2F6 may be potential biomarkers for HCC prognosis.
Exosomal Non Coding RNA in LIQUID Biopsies as a Promising Biomarker for Colorectal Cancer
Colorectal cancer (CRC) is one of the most common cancers worldwide, with a high mortality rate, especially in those that are diagnosed in late stages of the disease. The current screening blood-based markers, such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9), have low sensitivity and specificity. Meanwhile, other modalities are either expensive or invasive. Therefore, recent research has shifted towards a minimally invasive test, namely, liquid biopsy. Exosomes are favorable molecules sought in blood samples, since they are abundant, stable in circulation, and harbor genetic information and other biomolecules that could serve as biomarkers or even therapeutic targets. Furthermore, exosomal noncoding RNAs, such as miRNAs, lncRNAs, and circRNAs, have demonstrated the diagnostic potential to detect CRC at an early stage with a higher sensitivity and specificity than CEA and CA19-9 alone. Moreover, they have prognostic potential that is TNM stage specific and could serve as predictive biomarkers for the most common chemotherapeutic drug and combination regimen in CRC, which are 5-FU and FOLFOX, respectively. Therefore, in this review, we focus on the role of these exosomal noncoding RNAs as diagnostic, prognostic, and predictive biomarkers. In addition, we discuss the advantages and challenges of exosomes as a liquid biopsy target.
A Guide to the Short, Long and Circular RNAs in Hypertension and Cardiovascular Disease
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in adults in developed countries. CVD encompasses many diseased states, including hypertension, coronary artery disease and atherosclerosis. Studies in animal models and human studies have elucidated the contribution of many genetic factors, including non-coding RNAs. Non-coding RNAs are RNAs not translated into protein, involved in gene expression regulation post-transcriptionally and implicated in CVD. Of these, circular RNAs (circRNAs) and microRNAs are relevant. CircRNAs are created by the back-splicing of pre-messenger RNA and have been underexplored as contributors to CVD. These circRNAs may also act as biomarkers of human disease, as they can be extracted from whole blood, plasma, saliva and seminal fluid. CircRNAs have recently been implicated in various disease processes, including hypertension and other cardiovascular disease. This review article will explore the promising and emerging roles of circRNAs as potential biomarkers and therapeutic targets in CVD, in particular hypertension.
Circular RNAs as Potential Blood Biomarkers in Amyotrophic Lateral Sclerosis
Circular RNAs (circRNAs) are emerging as a novel, yet powerful player in many human diseases. They are involved in several cellular processes and are becoming a noteworthy type of biomarkers. Among other functions, circRNAs can serve as RNA sponges or as scaffolds for RNA-binding proteins. Here, we investigated a microarray expression profile of circRNAs in leukocyte samples from ALS patients and age- and sex-matched healthy controls to identify differentially expressed circRNAs. We selected 10 of them for a qPCR validation of expression on a larger set of samples, identification of their associations with clinical parameters, and evaluation of their diagnostic potential. In total, expression of 7/10 circRNAs was significant in a larger cohort of ALS patients, compared with age- and sex-matched healthy controls. Three of them (hsa_circ_0023919, hsa_circ_0063411, and hsa_circ_0088036) showed the same regulation as in microarray results. These three circRNAs also had AUC > 0.95, and sensitivity and specificity for the optimal threshold point > 90%, showing their potential for using them as diagnostic biomarkers.
CircRNA-miRNA-mRNA networks in plasma extracellular vesicles as biomarkers for first-onset schizophrenia
Background The circRNA-miRNA-mRNA networks of extracellular vesicles (EVs) in first-onset schizophrenia (FOS) have not been reported yet. Here, we constructed circRNA-miRNA-mRNA networks of EVs, and examined their diagnostic efficiency in FOS. Methods The expression levels of circRNAs, miRNAs and mRNAs in EVs derived from 10 FOS patients and 10 healthy controls (HC) were determined by high-throughput sequencing. The circRNA-miRNA-mRNA networks was constructed based on the overlapped miRNAs between differentially expressed (DE) miRNAs and circRNA-targted miRNAs, and overlapped mRNAs between DE-mRNAs and miRNA-targeted mRNAs. Gene expression levels were validated using quantitative real-time PCR in 31 FOS and 31 HC cases. Receiver operating characteristic (ROC) curve analysis was performed to examine the diagnostic efficacy. Correlation analysis was performed using Pearson’s or Spearman’s correlation coefficient. Results There were 26,194 DE-circRNAs, 22 DE-miRNAs, and 2637 DE-mRNAs in plasma EVs of FOS patients. Then, the circRNA-miRNA-mRNA networks consisting of 9 circRNA, 6 miRNA and 16 mRNA, were constructed. Three network (chr15:93496587–93499879+—hsa-miR-20b-5p—ANKH; chr7:40037093–40087476+—hsa-miR-22-3p—C5orf24; and chr19:17883266–17883550+—hsa-miR-502-3p—B4GALT5) were selected for further investigation. The expression levels of 9 genes in validation data were consistent with the results of the high-throughput sequencing. The area under the ROC curve (AUC) of the circRNA-miRNA-mRNA network was higher than that of circRNA, miRNA or mRNA alone in plasma EVs, and the AUC of mRNAs in plasma EVs was higher than that of mRNAs in peripheral blood. The expression levels of chr15:93496587–93,499,879+, chr7:40037093–40,087,476+, hsa-miR-22-3p and B4GALT5 were correlated with the PANSS score. Conclusion We constructed the circRNA-miRNA-mRNA networks of plasma EVs in FOS, demonstrating their potential as a biomarker for FOS.
Circulating exosome-circRNAs mediated downregulation of FGF9 through ceRNA mechanism aggravates renal fibrosis in diabetic nephropathy
Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes mellitus. It is characterized by progressive tubulointerstitial fibrosis. The aim of this study was to investigate the role of exosomal circular RNA (circRNAs) in regulating fibroblast growth factor 9 (FGF9) expression in DN through a competitive endogenous RNA (ceRNA) mechanism, and to reveal its potential therapeutic targets. Exosomes were isolated from serum of 3 healthy people and 3 patients with DN by ultra-fast centrifugation method, and the circRNA-miRNA-FGF9 regulatory network was constructed by combining high-throughput circRNA sequencing, bioinformatics analysis and weighted co-expression network (WGCNA). The results showed that the expression of circRNAs in serum exosomes of DN patients was significantly down-regulated, and hsa_circ_0006382 and hsa_circ_0019539 targeted the expression of FGF9 by binding to miR-34a-5p, miR-766-3p, miR-147a and miR-27a-3p. Further verification showed that the expression of FGF9 was decreased in renal tissues of DN patients (AUC = 0.902), and its recombinant protein could inhibit the expression of α-SMA and vimentin in high glucose-induced NRK-52E cells, indicating that activation of the circRNA/miRNA-FGF9 network promotes the EMT of renal tubular epithelial cells. This study revealed for the first time the mechanism of the circRNA-miRNA-FGF9 regulatory network in DN fibrosis, providing a theoretical basis for the development of diagnostic markers and targeted therapy strategies based on exosomal circRNA.