Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,385 result(s) for "RNA Isoforms"
Sort by:
Single-cell RNA counting at allele and isoform resolution using Smart-seq3
Large-scale sequencing of RNA from individual cells can reveal patterns of gene, isoform and allelic expression across cell types and states1. However, current short-read single-cell RNA-sequencing methods have limited ability to count RNAs at allele and isoform resolution, and long-read sequencing techniques lack the depth required for large-scale applications across cells2,3. Here we introduce Smart-seq3, which combines full-length transcriptome coverage with a 5′ unique molecular identifier RNA counting strategy that enables in silico reconstruction of thousands of RNA molecules per cell. Of the counted and reconstructed molecules, 60% could be directly assigned to allelic origin and 30–50% to specific isoforms, and we identified substantial differences in isoform usage in different mouse strains and human cell types. Smart-seq3 greatly increased sensitivity compared to Smart-seq2, typically detecting thousands more transcripts per cell. We expect that Smart-seq3 will enable large-scale characterization of cell types and states across tissues and organisms.Smart-seq3 enables isoform- and allele-specific reconstruction of RNA molecules.
Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles
Paraspeckles are unique subnuclear structures built around a specific long noncoding RNA, NEAT1, which is comprised of two isoforms produced by alternative 3′‐end processing (NEAT1_1 and NEAT1_2). To address the precise molecular processes that lead to paraspeckle formation, we identified 35 paraspeckle proteins (PSPs), mainly by colocalization screening with a fluorescent protein‐tagged full‐length cDNA library. Most of the newly identified PSPs possessed various putative RNA‐binding domains. Subsequent RNAi analyses identified seven essential PSPs for paraspeckle formation. One of the essential PSPs, HNRNPK, appeared to affect the production of the essential NEAT1_2 isoform by negatively regulating the 3′‐end polyadenylation of the NEAT1_1 isoform. An in vitro 3′‐end processing assay revealed that HNRNPK arrested binding of the CPSF6–NUDT21 (CFIm) complex in the vicinity of the alternative polyadenylation site of NEAT1_1. In vitro binding assays showed that HNRNPK competed with CPSF6 for binding to NUDT21, which was the underlying mechanism to arrest CFIm binding by HNRNPK. This HNRNPK function led to the preferential accumulation of NEAT1_2 and initiated paraspeckle construction with multiple PSPs. Paraspeckle formation is initiated by the long noncoding RNA isoform NEAT1_2. This study identifies 35 paraspeckle proteins, seven of which are essential for paraspeckle formation. One of these, hnRNP K, governs alternative 3′‐end processing of NEAT to generate NEAT1_2.
Uncovering the dynamics and consequences of RNA isoform changes during neuronal differentiation
Static gene expression programs have been extensively characterized in stem cells and mature human cells. However, the dynamics of RNA isoform changes upon cell-state-transitions during cell differentiation, the determinants and functional consequences have largely remained unclear. Here, we established an improved model for human neurogenesis in vitro that is amenable for systems-wide analyses of gene expression. Our multi-omics analysis reveals that the pronounced alterations in cell morphology correlate strongly with widespread changes in RNA isoform expression. Our approach identifies thousands of new RNA isoforms that are expressed at distinct differentiation stages. RNA isoforms mainly arise from exon skipping and the alternative usage of transcription start and polyadenylation sites during human neurogenesis. The transcript isoform changes can remodel the identity and functions of protein isoforms. Finally, our study identifies a set of RNA binding proteins as a potential determinant of differentiation stage-specific global isoform changes. This work supports the view of regulated isoform changes that underlie state-transitions during neurogenesis. Synopsis Multi-omics analysis of a newly established human neuronal cell differentiation model reveals widespread dynamic changes in RNA isoform expression, their functional consequences and potential determinants, providing evidence that they underlie cell-state-transitions during neurogenesis. Dynamic changes in RNA and protein levels are strongly correlated during all stages of neuronal differentiation. Nanopore sequencing (ONT-seq) during human neurogenesis reveals 12,019 non-annotated RNA isoforms, a large number of which are differentially expressed during differentiation. 70% of new RNA isoforms result from the use of alternative transcription start sites (TSSs) or polyadenylation (pA) sites and exon skipping. RNA isoform changes underlie protein isoform changes during human neurogenesis as revealed by integrating ONT-seq, RNA-seq and proteomics time course data. RNA motif enrichment, RNA-seq and available CLIP-seq data uncover a set of RNA binding proteins (RBPs) as potential determinants of differentiation stage-specific global isoform changes. Multi-omics analysis of a newly established human neuronal cell differentiation model reveals widespread dynamic changes in RNA isoform expression, their functional consequences and potential determinants, providing evidence that they underlie cell-state-transitions during neurogenesis.
Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization
Many human genes undergo alternative cleavage and polyadenylation to generate messenger RNA transcripts with different lengths at the 3' untranslated regions (3' UTRs) but that encode the same protein; now it is shown that these alternative 3' UTRs regulate protein localization. Protein destination depends on 3′ UTR lengths Many human genes undergo an alternative cleavage and polyadenylation process to generate messenger RNA transcripts that have different lengths at the 3′ untranslated regions (3′ UTRs), but still produce the same protein. Binyamin Berkovits and Christine Mayr demonstrate a reason for such differential mRNA processing — alternative 3′ UTRs regulate cellular localization and function of their corresponding proteins. Taking the membrane protein CD47 — which protects cells from phagocytosis — as a model, the authors find that those molecules with long 3′ UTRs are destined to go to the cell surface, while the shorter alternatives localize to the endoplasmic reticulum. About half of human genes use alternative cleavage and polyadenylation (ApA) to generate messenger RNA transcripts that differ in the length of their 3′ untranslated regions (3′ UTRs) while producing the same protein 1 , 2 , 3 . Here we show in human cell lines that alternative 3′ UTRs differentially regulate the localization of membrane proteins. The long 3′ UTR of CD47 enables efficient cell surface expression of CD47 protein, whereas the short 3′ UTR primarily localizes CD47 protein to the endoplasmic reticulum. CD47 protein localization occurs post-translationally and independently of RNA localization. In our model of 3′ UTR-dependent protein localization, the long 3′ UTR of CD47 acts as a scaffold to recruit a protein complex containing the RNA-binding protein HuR (also known as ELAVL1) and SET 4 to the site of translation. This facilitates interaction of SET with the newly translated cytoplasmic domains of CD47 and results in subsequent translocation of CD47 to the plasma membrane via activated RAC1 (ref. 5 ). We also show that CD47 protein has different functions depending on whether it was generated by the short or long 3′ UTR isoforms. Thus, ApA contributes to the functional diversity of the proteome without changing the amino acid sequence. 3′ UTR-dependent protein localization has the potential to be a widespread trafficking mechanism for membrane proteins because HuR binds to thousands of mRNAs 6 , 7 , 8 , 9 , and we show that the long 3′ UTRs of CD44 , ITGA1 and TNFRSF13C , which are bound by HuR, increase surface protein expression compared to their corresponding short 3′ UTRs. We propose that during translation the scaffold function of 3′ UTRs facilitates binding of proteins to nascent proteins to direct their transport or function—and this role of 3′ UTRs can be regulated by ApA.
CRISPR artificial splicing factors
Alternative splicing allows expression of mRNA isoforms from a single gene, expanding the diversity of the proteome. Its prevalence in normal biological and disease processes warrant precise tools for modulation. Here we report the engineering of CRISPR Artificial Splicing Factors (CASFx) based on RNA-targeting CRISPR-Cas systems. We show that simultaneous exon inclusion and exclusion can be induced at distinct targets by differential positioning of CASFx. We also create inducible CASFx (iCASFx) using the FKBP-FRB chemical-inducible dimerization domain, allowing small molecule control of alternative splicing. Finally, we demonstrate the activation of SMN2 exon 7 splicing in spinal muscular atrophy (SMA) patient fibroblasts, suggesting a potential application of the CASFx system. Control over splicing could be used for both therapeutic and engineering applications. Here the authors create artificial splicing factors using RNA-targeting CRISPR systems under small molecule control.
NEAT1 polyA-modulating antisense oligonucleotides reveal opposing functions for both long non-coding RNA isoforms in neuroblastoma
Many long non-coding RNAs (lncRNA) are highly dysregulated in cancer and are emerging as therapeutic targets. One example is NEAT1, which consists of two overlapping lncRNA isoforms, NEAT1_1 (3.7 kb) and NEAT1_2 (23 kb), that are functionally distinct. The longer NEAT1_2 is responsible for scaffolding gene-regulatory nuclear bodies termed paraspeckles, whereas NEAT1_1 is involved in paraspeckle-independent function. The NEAT1 isoform ratio is dependent on the efficient cleavage and polyadenylation of NEAT1_1 at the expense of NEAT1_2. Here, we developed a targeted antisense oligonucleotide (ASO) approach to sterically block NEAT1_1 polyadenylation processing, achieving upregulation of NEAT1_2 and abundant paraspeckles. We have applied these ASOs to cells of the heterogeneous infant cancer, neuroblastoma, as we found higher NEAT1_1:NEAT1_2 ratio and lack of paraspeckles in high-risk neuroblastoma cells. These ASOs decrease NEAT1_1 levels, increase NEAT1_2/paraspeckles and concomitantly reduce cell viability in high-risk neuroblastoma specifically. In contrast, overexpression of NEAT1_1 has the opposite effect, increasing cell proliferation. Transcriptomic analyses of high-risk neuroblastoma cells with altered NEAT1 ratios and increased paraspeckle abundance after ASO treatment showed an upregulation of differentiation pathways, as opposed to the usual aggressive neuroblastic phenotype. Thus, we have developed potential anti-cancer ASO drugs that can transiently increase growth-inhibiting NEAT1_2 RNA at the expense of growth-promoting NEAT1_1 RNA. These ASOs, unlike others that degrade lncRNAs, provide insights into the importance of altering lncRNA polyadenylation events to suppress tumorigenesis as a strategy to combat cancer.
Role of Alternatively Spliced Messenger RNA (mRNA) Isoforms of the Insulin-Like Growth Factor 1 (IGF1) in Selected Human Tumors
Insulin-like growth factor 1 (IGF1) is a key regulator of tissue growth and development that is also implicated in the initiation and progression of various cancers. The human IGF1 gene contains six exons and five long introns, the transcription of which is controlled by two promoters (P1 and P2). Alternate promoter usage, as well as alternative splicing (AS) of IGF1, results in the expression of six various variants (isoforms) of mRNA, i.e., IA, IB, IC, IIA, IIB, and IIC. A mature 70-kDa IGF1 protein is coded only by exons 3 and 4, while exons 5 and 6 are alternatively spliced code for the three C-terminal E peptides: Ea (exon 6), Eb (exon 5), and Ec (fragments of exons 5 and 6). The most abundant of those transcripts is IGF1Ea, followed by IGF1Eb and IGF1Ec (also known as mechano-growth factor, MGF). The presence of different IGF1 transcripts suggests tissue-specific auto- and/or paracrine action, as well as separate regulation of both of these gene promoters. In physiology, the role of different IGF1 mRNA isoforms and pro-peptides is best recognized in skeletal muscle tissue. Their functions include the development and regeneration of muscles, as well as maintenance of proper muscle mass. In turn, in nervous tissue, a neuroprotective function of short peptides, produced as a result of IGF1 expression and characterized by significant blood-brain barrier penetrance, has been described and could be a potential therapeutic target. When it comes to the regulation of carcinogenesis, the potential biological role of different var iants of IGF1 mRNAs and pro-peptides is also intensively studied. This review highlights the role of IGF1 isoform expression (mRNAs, proteins) in physiology and different types of human tumors (e.g., breast cancer, cervical cancer, colorectal cancer, osteosarcoma, prostate and thyroid cancers), as well as mechanisms of IGF1 spliced variants involvement in tumor biology.
Full-length transcriptome reconstruction reveals a large diversity of RNA and protein isoforms in rat hippocampus
Gene annotation is a critical resource in genomics research. Many computational approaches have been developed to assemble transcriptomes based on high-throughput short-read sequencing, however, only with limited accuracy. Here, we combine next-generation and third-generation sequencing to reconstruct a full-length transcriptome in the rat hippocampus, which is further validated using independent 5´ and 3´-end profiling approaches. In total, we detect 28,268 full-length transcripts (FLTs), covering 6,380 RefSeq genes and 849 unannotated loci. Based on these FLTs, we discover co-occurring alternative RNA processing events. Integrating with polysome profiling and ribosome footprinting data, we predict isoform-specific translational status and reconstruct an open reading frame (ORF)-eome. Notably, a high proportion of the predicted ORFs are validated by mass spectrometry-based proteomics. Moreover, we identify isoforms with subcellular localization pattern in neurons. Collectively, our data advance our knowledge of RNA and protein isoform diversity in the rat brain and provide a rich resource for functional studies. It is challenging to characterize diverse transcript isoforms by short-read sequencing. Here the authors report full-length transcriptomes in rat hippocampus by hybrid-sequencing, predict isoform-specific translational status, and reconstruct open reading frames validated by mass spectrometry.
Analysis of extracellular mRNA in human urine reveals splice variant biomarkers of muscular dystrophies
Urine contains extracellular RNA (exRNA) markers of urogenital cancers. However, the capacity of genetic material in urine to identify systemic diseases is unknown. Here we describe exRNA splice products in human urine as a source of biomarkers for the two most common forms of muscular dystrophies, myotonic dystrophy (DM) and Duchenne muscular dystrophy (DMD). Using a training set, RT-PCR, droplet digital PCR, and principal component regression, we identify ten transcripts that are spliced differently in urine exRNA from patients with DM type 1 (DM1) as compared to unaffected or disease controls, form a composite biomarker, and develop a predictive model that is 100% accurate in our independent validation set. Urine also contains mutation-specific DMD mRNAs that confirm exon-skipping activity of the antisense oligonucleotide drug eteplirsen. Our results establish that urine mRNA splice variants can be used to monitor systemic diseases with minimal or no clinical effect on the urinary tract. Patients with myotonic dystrophy need to undergo invasive muscle biopsies to monitor disease progression and response to therapy. Here, the authors show that extracellular RNAs in human urine can be used as biomarkers to differentiate patients from unaffected controls, and to monitor exon skipping in patients with Duchenne muscular dystrophy taking the drug eteplirsen.
Comprehensive catalog of dendritically localized mRNA isoforms from sub-cellular sequencing of single mouse neurons
Background RNA localization involves cis-motifs that are recognized by RNA-binding proteins (RBP), which then mediate localization to specific sub-cellular compartments. RNA localization is critical for many different cell functions, e.g., in neuronal dendrites, localization is a critical step for long-lasting synaptic potentiation. However, there is little consensus regarding which RNAs are localized and the role of alternative isoforms in localization. A comprehensive catalog of localized RNA can help dissect RBP/RNA interactions and localization motifs. Here, we utilize a single cell sub-cellular RNA sequencing approach to profile differentially localized RNAs from individual cells across multiple single cells to help identify a consistent set of localized RNA in mouse neurons. Results Using independent RNA sequencing from soma and dendrites of the same neuron, we deeply profiled the sub-cellular transcriptomes to assess the extent and variability of dendritic RNA localization in individual hippocampal neurons, including an assessment of differential localization of alternative 3′UTR isoforms. We identified 2225 dendritic RNAs, including 298 cases of 3′UTR isoform-specific localization. We extensively analyzed the localized RNAs for potential localization motifs, finding that B1 and B2 SINE elements are up to 5.7 times more abundant in localized RNA 3′UTRs than non-localized, and also functionally characterized the localized RNAs using protein structure analysis. Conclusion We integrate our list of localized RNAs with the literature to provide a comprehensive list of known dendritically localized RNAs as a resource. This catalog of transcripts, including differentially localized isoforms and computationally hypothesized localization motifs, will help investigators further dissect the genome-scale mechanism of RNA localization.