Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17,185
result(s) for
"RNA Transport"
Sort by:
tRNA-Related Sequences Trigger Systemic mRNA Transport in Plants
by
Yang, Lei
,
Thieme, Christoph J.
,
Apelt, Federico
in
Arabidopsis - genetics
,
Arabidopsis - metabolism
,
Arabidopsis thaliana
2016
In plants, protein-coding mRNAs can move via the phloem vasculature to distant tissues, where they may act as non-cell-autonomous signals. Emerging work has identified many phloem-mobile mRNAs, but little is known regarding RNA motifs triggering mobility, the extent of mRNA transport, and the potential of transported mRNAs to be translated into functional proteins after transport. To address these aspects, we produced reporter transcripts harboring tRNA-like structures (TLSs) that were found to be enriched in the phloem stream and in mRNAs moving over chimeric graft junctions. Phenotypic and enzymatic assays on grafted plants indicated that mRNAs harboring a distinctive TLS can move from transgenic roots into wild-type leaves and from transgenic leaves into wild-type flowers or roots; these mRNAs can also be translated into proteins after transport. In addition, we provide evidence that dicistronic mRNA:tRNA transcripts are frequently produced in Arabidopsis thaliana and are enriched in the population of graft-mobile mRNAs. Our results suggest that tRNA-derived sequences with predicted stem-bulge-stem-loop structures are sufficient to mediate mRNA transport and seem to be necessary for the mobility of a large number of endogenous transcripts that can move through graft junctions.
Journal Article
Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing
by
Tseng, Ching-Ying
,
Hsieh, Li-Ching
,
Lin, Shu-I
in
Arabidopsis
,
Arabidopsis - drug effects
,
Arabidopsis - genetics
2009
Recent studies have demonstrated the important role of plant microRNAs (miRNAs) under nutrient deficiencies. In this study, deep sequencing of Arabidopsis (Arabidopsis thaliana) small RNAs was conducted to reveal miRNAs and other small RNAs that were differentially expressed in response to phosphate (Pi) deficiency. About 3.5 million sequence reads corresponding to 0.6 to 1.2 million unique sequence tags from each Pi-sufficient or Pi-deficient root or shoot sample were mapped to the Arabidopsis genome. We showed that upon Pi deprivation, the expression of miR156, miR399, miR778, miR827, and miR2111 was induced, whereas the expression of miR169, miR395, and miR398 was repressed. We found cross talk coordinated by these miRNAs under different nutrient deficiencies. In addition to miRNAs, we identified one Pi starvation-induced DICER-LIKE1-dependent small RNA derived from the long terminal repeat of a retrotransposon and a group of 19-nucleotide small RNAs corresponding to the 5' end of tRNA and expressed at a high level in Pi-starved roots. Importantly, we observed an increased abundance of TAS4-derived trans-acting small interfering RNAs (ta-siRNAs) in Pi-deficient shoots and uncovered an autoregulatory mechanism of PAP1/MYB75 via miR828 and TAS4-siR81(-) that regulates the biosynthesis of anthocyanin. This finding sheds light on the regulatory network between miRNA/ta-siRNA and its target gene. Of note, a substantial amount of miR399* accumulated under Pi deficiency. Like miR399, miR399* can move across the graft junction, implying a potential biological role for miR399*. This study represents a comprehensive expression profiling of Pi-responsive small RNAs and advances our understanding of the regulation of Pi homeostasis mediated by small RNAs.
Journal Article
RNA transport and local translation in neurodevelopmental and neurodegenerative disease
by
Ward, Michael E.
,
Lippincott-Schwartz, Jennifer
,
Fernandopulle, Michael S.
in
631/378/1689/364
,
631/378/340
,
631/378/87
2021
Neurons decentralize protein synthesis from the cell body to support the active metabolism of remote dendritic and axonal compartments. The neuronal RNA transport apparatus, composed of
cis
-acting RNA regulatory elements, neuronal transport granule proteins, and motor adaptor complexes, drives the long-distance RNA trafficking required for local protein synthesis. Over the past decade, advances in human genetics, subcellular biochemistry, and high-resolution imaging have implicated each member of the apparatus in several neurodegenerative diseases, establishing failed RNA transport and associated processes as a unifying pathomechanism. In this review, we deconstruct the RNA transport apparatus, exploring each constituent’s role in RNA localization and illuminating their unique contributions to neurodegeneration.
RNA localization is a defining and intricately regulated feature of neuronal physiology. Fernandopulle et al. review how altered RNA transport and local translation might inform understanding of neuronal disease.
Journal Article
Mechanisms of dendritic mRNA transport and its role in synaptic tagging
2011
The localization of RNAs critically contributes to many important cellular processes in an organism, such as the establishment of polarity, asymmetric division and migration during development. Moreover, in the central nervous system, the local translation of mRNAs is thought to induce plastic changes that occur at synapses triggered by learning and memory. Here, we will critically review the physiological functions of well‐established dendritically localized mRNAs and their associated factors, which together form ribonucleoprotein particles (RNPs). Second, we will discuss the life of a localized transcript from transcription in the nucleus to translation at the synapse and introduce the concept of the ‘
RNA signature
’ that is characteristic for each transcript. Finally, we present the ‘
sushi belt model
’ of how localized RNAs within neuronal RNPs may dynamically patrol multiple synapses rather than being anchored at a single synapse. This new model integrates our current understanding of synaptic function ranging from synaptic tagging and capture to functional and structural reorganization of the synapse upon learning and memory.
In this review, our understanding of the mechanisms and regulation of dendritic mRNA localization is synthesized into a ‘sushi belt’ model of mRNA transport and translational control in neurons.
Journal Article
Soma-to-germline RNA communication
2022
More than a century ago, August Weissman defined a distinction between the germline (responsible for propagating heritable information from generation to generation) and the perishable soma. A central motivation for this distinction was to argue against the inheritance of acquired characters, as the germline was partly defined by its protection from external conditions. However, recent decades have seen an explosion of studies documenting the intergenerational and transgenerational effects of environmental conditions, forcing a re-evaluation of how external signals are sensed by, or communicated to, the germline epigenome. Here, motivated by the centrality of small RNAs in paradigms of epigenetic inheritance, we review across species the myriad examples of intercellular RNA trafficking from nurse cells or somatic tissues to developing gametes.In this Review, Conine and Rando discuss, across species, the myriad examples of intercellular RNA trafficking from nurse cells or somatic tissues to developing gametes, and consider how intercellular RNA trafficking shapes the germline epigenome.
Journal Article
Correcting human mitochondrial mutations with targeted RNA import
by
Zhang, Jin
,
Koehler, Carla M
,
Shimada, Eriko
in
3' Untranslated regions
,
Aging
,
Base Sequence
2012
Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects, and aging. An efficient and simple mechanism for neutralizing deleterious mitochondrial DNA (mtDNA) alterations has unfortunately remained elusive. Here, we report that a 20-ribonucleotide stem-loop sequence from the H1 RNA, the RNA component of the human RNase P enzyme, appended to a nonimported RNA directs the import of the resultant RNA fusion transcript into human mitochondria. The methodology is effective for both noncoding RNAs, such as tRNAs, and mRNAs. The RNA import component, polynucleotide phosphorylase (PNPASE), facilitates transfer of this hybrid RNA into the mitochondrial matrix. In addition, nucleus-encoded mRNAs for mitochondrial proteins, such as the mRNA of human mitochondrial ribosomal protein S12 (MRPS12), contain regulatory sequences in their 3'-untranslated region (UTR) that confers localization to the mitochondrial outer membrane, which is postulated to aid in protein translocation after translation. We show that for some mitochondrial-encoded transcripts, such as COX2, a 3'-UTR localization sequence is not required for mRNA import, whereas for corrective mitochondrial-encoded tRNAs, appending the 3'-UTR localization sequence was essential for efficient fusion-transcript translocation into mitochondria. In vivo, functional defects in mitochondrial RNA (mtRNA) translation and cell respiration were reversed in two human disease lines. Thus, this study indicates that a wide range of RNAs can be targeted to mitochondria by appending a targeting sequence that interacts with PNPASE, with or without a mitochondrial localization sequence, providing an exciting, general approach for overcoming mitochondrial genetic disorders.
Journal Article
RNA-directed activation of cytoplasmic dynein-1 in reconstituted transport RNPs
by
Dix, Carly I
,
McClintock, Mark A
,
Johnson, Christopher M
in
Animals
,
Bicaudal-D
,
Binding Sites
2018
Polarised mRNA transport is a prevalent mechanism for spatial control of protein synthesis. However, the composition of transported ribonucleoprotein particles (RNPs) and the regulation of their movement are poorly understood. We have reconstituted microtubule minus end-directed transport of mRNAs using purified components. A Bicaudal-D (BicD) adaptor protein and the RNA-binding protein Egalitarian (Egl) are sufficient for long-distance mRNA transport by the dynein motor and its accessory complex dynactin, thus defining a minimal transport-competent RNP. Unexpectedly, the RNA is required for robust activation of dynein motility. We show that a cis-acting RNA localisation signal promotes the interaction of Egl with BicD, which licenses the latter protein to recruit dynein and dynactin. Our data support a model for BicD activation based on RNA-induced occupancy of two Egl-binding sites on the BicD dimer. Scaffolding of adaptor protein assemblies by cargoes is an attractive mechanism for regulating intracellular transport.
In our cells, tiny molecular motors transport the components necessary for life’s biological processes from one location to another. They do so by loading their cargo, and burning up chemical fuel to carry it along pathways made of filaments. For example, one such motor, called dynein, can move molecules of messenger RNA (mRNA) to specific locations within the cell. There, the mRNA will be used as a template to create proteins, which will operate at exactly the right place.
Transporting mRNA in this way is critical in processes such as embryonic development and the formation of memories; yet, this mechanism is still poorly understood. Previous work suggested that the mRNA is simply a passenger of the dynein motor, but McClintock et al. asked if this is really the case. Instead, could mRNA regulate its own sorting by controlling the activity of dynein?
Studying mRNA trafficking within the complex molecular environment of a cell is challenging, so mRNA transporting machinery was recreated in the laboratory. Only the proteins necessary to build a working system were included in the experiments. In addition to the filaments, the components included dynein and a complex of proteins known as dynactin, which allows the motor to move together with a protein called BICD2. A protein named Egalitarian was used to link the mRNA to BICD2.
By filming fluorescently labelled proteins and mRNAs, McClintock et al. discovered that mRNA strongly promotes the movement of the dynein motor. A structured section in the mRNA acts as a docking area for two copies of Egalitarian. This activates BICD2, which then binds to dynein and dynactin, thereby completing the transport machinery. According to these results, the mRNA directs the assembly of the system that will carry it within the cell.
Viruses such as HIV and herpesvirus hijack dynein motors to have their genetic information moved around a cell in order to propagate infection. Understanding precisely how mRNA is transported may help to develop new strategies to fight these viruses.
Journal Article
Influenza virus mRNAs encode determinants for nuclear export via the cellular TREX-2 complex
by
García-Sastre, Adolfo
,
Gazzara, Matthew
,
Haddad, Christina
in
14/32
,
3' Untranslated regions
,
38/109
2023
Nuclear export of influenza A virus (IAV) mRNAs occurs through the nuclear pore complex (NPC). Using the Auxin-Induced Degron (AID) system to rapidly degrade proteins, we show that among the nucleoporins localized at the nucleoplasmic side of the NPC, TPR is the key nucleoporin required for nuclear export of influenza virus mRNAs. TPR recruits the
TR
anscription and
EX
port complex (TREX)−2 to the NPC for exporting a subset of cellular mRNAs. By degrading components of the TREX-2 complex (GANP, Germinal-center Associated Nuclear Protein; PCID2, PCI domain containing 2), we show that influenza mRNAs require the TREX-2 complex for nuclear export and replication. Furthermore, we found that cellular mRNAs whose export is dependent on GANP have a small number of exons, a high mean exon length, long 3’ UTR, and low GC content. Some of these features are shared by influenza virus mRNAs. Additionally, we identified a 45 nucleotide RNA signal from influenza virus HA mRNA that is sufficient to mediate GANP-dependent mRNA export. Thus, we report a role for the TREX-2 complex in nuclear export of influenza mRNAs and identified RNA determinants associated with the TREX-2-dependent mRNA export.
Here, Bhat et al. show that Influenza A virus mRNAs are exported from the nucleus via the nucleoporin Tpr and the mRNA export complex TREX-2. These mRNAs have low exon number, high mean exon length, and low GC content. A 45-nucleotide RNA signal can mediate export via TREX-2.
Journal Article
Structural analysis of human ARS2 as a platform for co-transcriptional RNA sorting
by
Rettel, Mandy
,
Schulze, Wiebke Manuela
,
Cusack, Stephen
in
631/337/1645
,
631/45/612/1230
,
631/535/1266
2018
ARS2 is a highly conserved metazoan protein involved in numerous aspects of nuclear RNA metabolism. As a direct partner of the nuclear cap-binding complex (CBC), it mediates interactions with diverse RNA processing and transport machineries in a transcript-dependent manner. Here, we present the human ARS2 crystal structure, which exhibits similarities and metazoan-specific differences to the plant homologue SERRATE, most notably an additional RRM domain. We present biochemical, biophysical and cellular interactome data comparing wild type and mutant ARS2 that identify regions critical for interactions with FLASH (involved in histone mRNA biogenesis), NCBP3 (a putative cap-binding protein involved in mRNA export) and single-stranded RNA. We show that FLASH and NCBP3 have overlapping binding sites on ARS2 and that CBC–ARS2–NCBP3 form a ternary complex that is mutually exclusive with CBC–ARS–PHAX (involved in snRNA export). Our results support that mutually exclusive higher-order CBC–ARS2 complexes are critical in determining Pol II transcript fate.
Arsenic resistance protein 2 (ARS2) plays an important role in nuclear RNA metabolism and interacts with the nuclear cap-binding complex (CBC). Here the authors present the human ARS2 structure and identify regions important for its interactions with binding partners supporting that mutually exclusive higher order CBC-ARS2 complexes are formed.
Journal Article
Translational control of localized mRNAs: restricting protein synthesis in space and time
2008
Key Points
Recent genome-wide analyses in diverse organisms and cell types have revealed that a vast number of mRNAs display specific subcellular localization, and thus that mRNA localization coupled with precise translational control is a major mechanism used by cells to establish functionally distinct compartments and structures.
Both the transport and translation of localizing mRNAs are regulated in the context of ribonucleoprotein (RNP) complexes of precise composition. These complexes start assembling in the nucleus and contain
trans
-acting regulatory factors, both proteins and non-coding RNAs.
Translation of mRNAs that are in the process of being localized is blocked by a combination of translational repressors. These bind to their target mRNAs by recognizing specific
cis
-regulatory motifs. These repressors inhibit translation at various steps, but most block translation initiation.
For many localizing mRNAs, translation is directly activated upon arrival at the final destination. This is commonly achieved by spatially restricted phosphorylation of translational repressors and a subsequent decrease in their affinity for target mRNAs.
In some cell types, mainly neurons, translation of localized mRNAs is activated only in response to specific external signals. In this case, translational derepression is induced through conserved signalling pathways by regulation both of general components of the translational machinery and of mRNA-specific repressors.
Decrypting the combinatorial code of
cis
-regulatory elements that dictate the specific behaviour of mRNAs is now one of the main challenges.
The localization of mRNAs coupled with precise translational control is an important mechanism that is used by cells to establish functionally distinct compartments. Translation of localizing mRNAs is repressed by mechanisms that target translation initiation, and is derepressed following arrival at the final destination.
As highlighted by recent genome-wide analyses in diverse organisms and cell types, subcellular targeting of mRNAs has emerged as a major mechanism for cells to establish functionally distinct compartments and structures. For protein synthesis to be spatially restricted, translation of localizing mRNAs is silenced during their transport and is activated when they reach their final destination. Such a precise translation pattern is controlled by repressors, which are specifically recruited to transport ribonucleoprotein particles and block translation at different steps. Functional studies have revealed that the inactivation of these repressors, either by pre-localized proteins or in response to conserved signalling pathways, triggers local protein synthesis.
Journal Article