Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,799
result(s) for
"RNA sequencing (RNA-seq)"
Sort by:
Genome‐wide alternative splicing profiling in the fungal plant pathogen Sclerotinia sclerotiorum during the colonization of diverse host families
by
Kusch, Stefan
,
Ibrahim, Heba M.M.
,
Raffaele, Sylvain
in
Alternative splicing
,
Colonization
,
computational analysis
2021
Sclerotinia sclerotiorum is a notorious generalist plant pathogen that threatens more than 600 host plants, including wild and cultivated species. The molecular bases underlying the broad compatibility of S. sclerotiorum with its hosts is not fully elucidated. In contrast to higher plants and animals, alternative splicing (AS) is not well studied in plant‐pathogenic fungi. AS is a common regulated cellular process that increases cell protein and RNA diversity. In this study, we annotated spliceosome genes in the genome of S. sclerotiorum and characterized their expression in vitro and during the colonization of six host species. Several spliceosome genes were differentially expressed in planta, suggesting that AS was altered during infection. Using stringent parameters, we identified 1,487 S. sclerotiorum genes differentially expressed in planta and exhibiting alternative transcripts. The most common AS events during the colonization of all plants were retained introns and the alternative 3′ receiver site. We identified S. sclerotiorum genes expressed in planta for which (a) the relative accumulation of alternative transcripts varies according to the host being colonized and (b) alternative transcripts harbour distinct protein domains. This notably included 42 genes encoding predicted secreted proteins showing high‐confidence AS events. This study indicates that AS events are taking place in the plant pathogenic fungus S. sclerotiorum during the colonization of host plants and could generate functional diversity in the repertoire of proteins secreted by S. sclerotiorum during infection.
Alternative splicing occurs in the plant‐pathogenic fungus Sclerotinia sclerotiorum during colonization of diverse host plants and could generate functional diversity in the repertoire of secreted proteins.
Journal Article
AtRTD – a comprehensive reference transcript dataset resource for accurate quantification of transcript-specific expression in Arabidopsis thaliana
2015
RNA-sequencing (RNA-seq) allows global gene expression analysis at the individual transcript level. Accurate quantification of transcript variants generated by alternative splicing (AS) remains a challenge. We have developed a comprehensive, nonredundant Arabidopsis reference transcript dataset (AtRTD) containing over 74 000 transcripts for use with algorithms to quantify AS transcript isoforms in RNA-seq.
The AtRTD was formed by merging transcripts from TAIR10 and novel transcripts identified in an AS discovery project. We have estimated transcript abundance in RNA-seq data using the transcriptome-based alignment-free programmes SAILFISH and SALMON and have validated quantification of splicing ratios from RNA-seq by high resolution reverse transcription polymerase chain reaction (HR RT-PCR).
Good correlations between splicing ratios from RNA-seq and HR RT-PCR were obtained demonstrating the accuracy of abundances calculated for individual transcripts in RNA-seq.
The AtRTD is a resource that will have immediate utility in analysing Arabidopsis RNA-seq data to quantify differential transcript abundance and expression.
Journal Article
Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis)
by
Alex Harkess
,
Jim Leebens-Mack
,
Hong-Yan Shan
in
Arabidopsis - genetics
,
Arabidopsis thaliana
,
Asparagus
2015
Sex chromosomes have evolved independently in phylogenetically diverse flowering plant lineages. The genes governing sex determination in dioecious species remain unknown, but theory predicts that the linkage of genes influencing male and female function will spur the origin and early evolution of sex chromosomes. For example, in an XY system, the origin of an active Y may be spurred by the linkage of female suppressing and male promoting genes.
Garden asparagus (Asparagus officinalis) serves as a model for plant sex chromosome evolution, given that it has recently evolved an XX/XY sex chromosome system. In order to elucidate the molecular basis of gender differences and sex determination, we used RNA-sequencing (RNA-Seq) to identify differentially expressed genes between female (XX), male (XY) and supermale (YY) individuals.
We identified 570 differentially expressed genes, and showed that significantly more genes exhibited male-biased than female-biased expression in garden asparagus. In the context of anther development, we identified genes involved in pollen microspore and tapetum development that were specifically expressed in males and supermales.
Comparative analysis of genes in the Arabidopsis thaliana, Zea mays and Oryza sativa anther development pathways shows that anther sterility in females probably occurs through interruption of tapetum development before microspore meiosis.
Journal Article
Genome‐wide expression quantitative trait locus analysis in a recombinant inbred line population for trait dissection in peanut
2020
Summary
The transcriptome connects genome to the gene function and ultimate phenome in biology. So far, transcriptomic approach was not used in peanut for performing trait mapping in bi‐parental populations. In this research, we sequenced the whole transcriptome in immature seeds in a peanut recombinant inbred line (RIL) population and explored thoroughly the landscape of transcriptomic variations and its genetic basis. The comprehensive analysis identified total 49 691 genes in RIL population, of which 92 genes followed a paramutation‐like expression pattern. Expression quantitative trait locus (eQTL) analysis identified 1207 local eQTLs and 15 837 distant eQTLs contributing to the whole‐genome transcriptomic variation in peanut. There were 94 eQTL hot spot regions detected across the genome with the dominance of distant eQTL. By integrating transcriptomic profile and annotation analyses, we unveiled a putative candidate gene and developed a linked marker InDel02 underlying a major QTL responsible for purple testa colour in peanut. Our result provided a first understanding of genetic basis of whole‐genome transcriptomic variation in peanut and illustrates the potential of the transcriptome‐aid approach in dissecting important traits in non‐model plants.
Journal Article
RNA-Seq profiling of circular RNAs in human colorectal Cancer liver metastasis and the potential biomarkers
2019
In this study, the secondary sequencing was used to profile circRNA expression in the tissue samples from three CRC patients with liver metastasis and three matched CRC patients. After verified some candidates in another 40 CRC and CRC-m samples by qRT-PCR, we further demonstrated that circRNA_0001178 and circRNA_0000826 were significantly upregulated in CRC-m tissues, and both of them had the potential for diagnosing liver metastases from colorectal cancer. Finally, the networks of circRNA-miRNA-mRNA base on these two circRNAs were constructed respectively. This study showed that differentially expressed circRNAs were existed between the tissue samples from colorectal cancer patients with and without liver metastasis. And also suggested that circRNA_0001178 and circRNA_0000826 may serve as a potential diagnostic biomarker for liver metastases from colorectal cancer.
Journal Article
Commentary: a review of technical considerations for planning an RNA-Sequencing experiment
by
Meller, Robert
,
Verma, Rashi
,
Savaria-Butler, Amanda
in
Animal Genetics and Genomics
,
Biomedical and Life Sciences
,
Data analysis
2025
There are a bewildering number of variables to consider when planning an RNA sequencing study (RNA-Seq). Here we discuss some of the considerations for an investigator initiating such studies, with a focus on library preparation, depletion techniques, considerations for data analysis, and finally, we consider the cost of such a study. The goal of this summary is to make the researcher aware of such considerations to be able to plan an analysis strategy prior to initiating an RNA-Seq study.
Journal Article
NQO1 regulates expression and alternative splicing of apoptotic genes associated with Alzheimer's disease in PC12 cells
by
Sun, Yue
,
Chen, Dong
,
Liu, Yongming
in
Alternative Splicing
,
alternative splicing (AS)
,
Alzheimer Disease - genetics
2023
Purpose
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive dysfunction. Quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that plays an important role in controlling cellular redox state, whose expression is altered in the brain tissues of AD patients. In addition to its traditional antioxidant effects, NQO1 also acts as a multifunctional RNA‐binding protein involved in posttranscriptional regulation. Whether the RNA‐binding activity of NQO1 influences AD pathology has not been investigated yet.
Methods
The RNA‐binding functions of NQO1 in rat pheochromocytoma (PC12) cells were investigated using siRNA knockdown followed by total RNA sequencing. Reverse transcription quantitative polymerase chain reaction was performed to explore the impact of NQO1 on the transcription and alternative splicing of apoptotic genes.
Results
NQO1 knockdown led to a significant increase in cellular apoptosis. Genes involved in certain apoptosis pathways, such as positive regulation of apoptotic processes and mitogen‐activated protein kinase signaling, were under global transcriptional and alternative splicing regulation. NQO1 regulated the transcription of apoptotic genes Cryab, Lgmn, Ngf, Apoe, Brd7, and Stat3, as well as the alternative splicing of apoptotic genes BIN1, Picalm, and Fyn.
Conclusion
Our findings suggest that NQO1 participates in the pathology of AD by regulating the expression and alternative splicing of the genes involved in apoptosis. These results extend our understanding of NQO1 in apoptotic pathways at the posttranscriptional level in AD.
Our findings suggest that NQO1 participates in the pathology of AD by regulating the expression and alternative splicing of the genes involved in apoptosis.
Journal Article
Astrocytes in Alzheimer’s Disease: Pathological Significance and Molecular Pathways
by
Arranz, Amaia M.
,
Preman, Pranav
,
Verkhratsky, Alexei
in
Alzheimer's disease
,
Alzheimer´s disease
,
astrocyte
2021
Astrocytes perform a wide variety of essential functions defining normal operation of the nervous system and are active contributors to the pathogenesis of neurodegenerative disorders such as Alzheimer’s among others. Recent data provide compelling evidence that distinct astrocyte states are associated with specific stages of Alzheimer´s disease. The advent of transcriptomics technologies enables rapid progress in the characterisation of such pathological astrocyte states. In this review, we provide an overview of the origin, main functions, molecular and morphological features of astrocytes in physiological as well as pathological conditions related to Alzheimer´s disease. We will also explore the main roles of astrocytes in the pathogenesis of Alzheimer´s disease and summarize main transcriptional changes and altered molecular pathways observed in astrocytes during the course of the disease.
Journal Article
Comprehensive analysis of scRNA-seq and bulk RNA-seq reveals the non-cardiomyocytes heterogeneity and novel cell populations in dilated cardiomyopathy
2025
Background
Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Infiltration and alterations in non-cardiomyocytes of the human heart involve crucially in the occurrence of DCM and associated immunotherapeutic approaches.
Methods
We constructed a single-cell transcriptional atlas of DCM and normal patients. Then, the xCell algorithm, EPIC algorithm, MCP counter algorithm, and CIBERSORT method were applied to identify DCM-related cell types with a high degree of precision and specificity using RNA-seq datasets. We further analyzed the heterogeneity among cell types, performed trajectory analysis, examined transcription factor regulatory networks, investigated metabolic heterogeneity, and conducted intercellular communication analysis. Finally, we used bulk RNA-seq data to confirm the roles of M2-like2 subpopulations and GAS6 in DCM.
Results
We integrated and analyzed Single-cell sequencing (scRNA-seq) data from 7 DCM samples and 3 normal heart tissue samples, totaling 70,958 single-cell data points. Based on gene-specific expression and prior marker genes, we identified 9 distinct subtypes, including fibroblasts, endothelial cells, myeloid cells, pericytes, T/NK cells, smooth muscle cells, neuronal cells, B cells, and cardiomyocytes. Using machine learning methods to quantify bulk RNA-seq data, we found significant differences in fibroblasts, T cells, and macrophages between DCM and normal samples. Further analysis revealed high heterogeneity in tissue preference, gene expression, functional enrichment, immunodynamics, transcriptional regulatory factors, metabolic changes, and communication patterns in fibroblasts and myeloid cells. Among fibroblast subpopulations, proliferative F3 cells were implicated in the fibroblast transition process in DCM, while myofibroblast F6 cells promoted the fibroblast transition to a late cell state in DCM. Additionally, two subpopulations of M2 macrophages, M2-like1 and M2-like2, were identified with distinct features. The M2-like2 cell subpopulation, which was enriched in glycolysis and fatty acid metabolism, involved in inflammation inhibition and fibrosis promotion. Cell‒cell communication analysis indicated the GAS6-MERTK axis might exhibit interaction between M2 macrophage and M2-like1 macrophage. Furthermore, deconvolution analysis for bulk RNA-seq data revealed a significant increase in M2-like2 subpopulations in DCM, suggesting a more important role for this cell population in DCM.
Conclusions
We revealed the heterogeneity of non-cardiomyocytes in DCM and identified subpopulations of myofibroblast and macrophages engaged in DCM, which suggested a potential significance of non-cardiomyocytes in treatment of DCM.
Journal Article
Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines
by
Liu, Songtao
,
Zenda, Tinashe
,
Duan, Huijun
in
Abiotic stress
,
Bioinformatics
,
Circadian rhythm
2019
To unravel the molecular mechanisms underpinning maize (Zea mays L.) drought stress tolerance, we conducted comprehensive comparative transcriptome and physiological analyses of drought-tolerant YE8112 and drought-sensitive MO17 inbred line seedlings that had been exposed to drought treatment for seven days. Resultantly, YE8112 seedlings maintained comparatively higher leaf relative water and proline contents, greatly increased peroxidase activity, but decreased malondialdehyde content, than MO17 seedlings. Using an RNA sequencing (RNA-seq)-based approach, we identified a total of 10,612 differentially expressed genes (DEGs). From these, we mined out four critical sets of drought responsive DEGs, including 80 specific to YE8112, 5140 shared between the two lines after drought treatment (SD_TD), five DEGs of YE8112 also regulated in SD_TD, and four overlapping DEGs between the two lines. Drought-stressed YE8112 DEGs were primarily associated with nitrogen metabolism and amino-acid biosynthesis pathways, whereas MO17 DEGs were enriched in the ribosome pathway. Additionally, our physiological analyses results were consistent with the predicted RNA-seq-based findings. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) analysis and the RNA-seq results of twenty representative DEGs were highly correlated (R2 = 98.86%). Crucially, tolerant line YE8112 drought-responsive genes were predominantly implicated in stress signal transduction; cellular redox homeostasis maintenance; MYB, NAC, WRKY, and PLATZ transcriptional factor modulated; carbohydrate synthesis and cell-wall remodeling; amino acid biosynthesis; and protein ubiquitination processes. Our findings offer insights into the molecular networks mediating maize drought stress tolerance.
Journal Article