Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
16,086 result(s) for "Radiation dosimetry"
Sort by:
Monte Carlo Calculations in Nuclear Medicine (Second Edition)
The book provides a review of concepts and methodologies developed and adopted for quantitative imaging-guided radiation dosimetry calculations in targeted radionuclide. It also provides an overview of model design of anthropomorphic computational models and software packages developed for Monte Carlo-based dosimetry calculations.
Mass Density Characterization of Hydrogel-Based Systems Inoculated with Bacterial Strains and Dose-Response Performance of Escherichia coli Inoculation
This study aims to determine the density of two hydrogel-based media, medium with agar-agar and medium with agar-agar and glucose, which are suitable for both irradiation and bacterial growth, considering the presence or absence of Staphylococcus aureus and Escherichia coli strains. The viability of Escherichia coli cell-inoculated systems was also evaluated to explore potential applications in radiation dosimetry within the 0–10 Gy range, using spectrophotometric and bacterial culture methods. Mass density measurements were performed at varying temperatures using two approaches: the first one, based on direct measurements of mass and volume, yielded densities comparable to liquid water, with uncertainties ranging from 9 to 16%, while the second approach, employing Archimedes’ principle (mass in air vs. mass in a liquid of known density), produced more accurate results, with uncertainties between 0.04 and 0.08%, thus proving more reliable for density determinations. Furthermore, the feasibility study of Escherichia coli-inoculated systems for ionizing radiation dosimetry demonstrated a linear spectrophotometric response to radiation doses across the investigated range, particularly for samples stored at 25 °C. The studied systems were characterized in terms of the corresponding growth curve and post-irradiation bacterial survival, supporting their potentiality as reliable ionizing radiation dosimeters.
FluoroTome 1: An Apparatus for Tomographic Imaging of Radio-Fluorogenic (RFG) Gels
Radio-fluorogenic (RFG) gels become permanently fluorescent when exposed to high-energy radiation with the intensity of the emission proportional to the local dose of radiation absorbed. An apparatus is described, FluoroTome 1, that is capable of taking a series of tomographic images (thin slices) of the fluorescence of such an irradiated RFG gel on-site and within minutes of radiation exposure. These images can then be compiled to construct a 3D movie of the dose distribution within the gel. The historical development via a laboratory-bench prototype to a readily transportable, user-friendly apparatus is described. Instrumental details and performance tests are presented.
Influence of the use of various imaging units and projections on the radiation dose received by children during chest digital radiography
To investigate the impact of the use of different imaging units and projections on radiation dose and image quality during chest digital radiography (DR) in 3- and 4-year-old children. Two hundred forty 3- and 4-year-old participants requiring chest DR were included; they were divided into three groups: supine anterior-posterior projection (APP), standing APP and standing posterior-anterior projection (PAP). Each group included 40 participants who were evaluated using the same imaging unit. The dose area product (DAP) and the entrance surface dose (ESD) were recorded after each exposure. The visual grading analysis score (VGAS) was used to evaluate image quality, and the longitudinal distance (LD) from the apex of the right lung to the apex of the right diaphragm was used to evaluate the inspiration extent. DAP and ESD were significantly lower in the standing PAP and APP groups than in the supine APP group (P<0.05), but LD was significantly higher in the standing PAP and APP groups than in the supine APP group (P<0.05). Additionally, the pulmonary field area was significantly higher for the standing PAP group than for the standing and supine APP groups (P<0.05). The correlations between ESD, DAP, and VGAS were positive (P<0.001), showing that larger ESD and DAP correspond to higher VGAS. The correlations between ESD, DAP, and body mass index (BMI) were also positive (P0.05). The radiation dose to superficial organs may be lower with standing PAP than with standing APP during chest DR. Standing PAP should be selected for chest DR in 3- and 4-year-old children, as it may decrease the required radiation dose.
Influence of the use of various imaging units and projections on the radiation dose received by children during chest digital radiography
To investigate the impact of the use of different imaging units and projections on radiation dose and image quality during chest digital radiography (DR) in 3- and 4-year-old children. Two hundred forty 3- and 4-year-old participants requiring chest DR were included; they were divided into three groups: supine anterior-posterior projection (APP), standing APP and standing posterior-anterior projection (PAP). Each group included 40 participants who were evaluated using the same imaging unit. The dose area product (DAP) and the entrance surface dose (ESD) were recorded after each exposure. The visual grading analysis score (VGAS) was used to evaluate image quality, and the longitudinal distance (LD) from the apex of the right lung to the apex of the right diaphragm was used to evaluate the inspiration extent. DAP and ESD were significantly lower in the standing PAP and APP groups than in the supine APP group (P<0.05), but LD was significantly higher in the standing PAP and APP groups than in the supine APP group (P<0.05). Additionally, the pulmonary field area was significantly higher for the standing PAP group than for the standing and supine APP groups (P<0.05). The correlations between ESD, DAP, and VGAS were positive (P<0.001), showing that larger ESD and DAP correspond to higher VGAS. The correlations between ESD, DAP, and body mass index (BMI) were also positive (P0.05). The radiation dose to superficial organs may be lower with standing PAP than with standing APP during chest DR. Standing PAP should be selected for chest DR in 3- and 4-year-old children, as it may decrease the required radiation dose.
A Hybrid Direct Search and Model-Based Derivative-Free Optimization Method with Dynamic Decision Processing and Application in Solid-Tank Design
A derivative-free optimization (DFO) method is an optimization method that does not make use of derivative information in order to find the optimal solution. It is advantageous for solving real-world problems in which the only information available about the objective function is the output for a specific input. In this paper, we develop the framework for a DFO method called the DQL method. It is designed to be a versatile hybrid method capable of performing direct search, quadratic-model search, and line search all in the same method. We develop and test a series of different strategies within this framework. The benchmark results indicate that each of these strategies has distinct advantages and that there is no clear winner in the overall performance among efficiency and robustness. We develop the Smart DQL method by allowing the method to determine the optimal search strategies in various circumstances. The Smart DQL method is applied to a problem of solid-tank design for 3D radiation dosimetry provided by the UBCO (University of British Columbia—Okanagan) 3D Radiation Dosimetry Research Group. Given the limited evaluation budget, the Smart DQL method produces high-quality solutions.