Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
61,613 result(s) for "Radiation models"
Sort by:
A Traceable Spectral Radiation Model of Radiation Thermometry
Despite great technical capabilities, the theory of non-contact temperature measurement is usually not fully applicable to the use of measuring instruments in practice. While black body calibrations and black body radiation thermometry (BBRT) are in practice well established and easy to accomplish, this calibration protocol is never fully applicable to measurements of real objects under real conditions. Currently, the best approximation to real-world radiation thermometry is grey body radiation thermometry (GBRT), which is supported by most measuring instruments to date. Nevertheless, the metrological requirements necessitate traceability; therefore, real body radiation thermometry (RBRT) method is required for temperature measurements of real bodies. This article documents the current state of temperature calculation algorithms for radiation thermometers and the creation of a traceable model for radiation thermometry of real bodies that uses an inverse model of the system of measurement to compensate for the loss of data caused by spectral integration, which occurs when thermal radiation is absorbed on the active surface of the sensor. To solve this problem, a hybrid model is proposed in which the spectral input parameters are converted to scalar inputs of a traditional scalar inverse model for GBRT. The method for calculating effective parameters, which corresponds to a system of measurement, is proposed and verified with the theoretical simulation model of non-contact thermometry. The sum of effective instrumental parameters is presented for different temperatures to show that the rule of GBRT, according to which the sum of instrumental emissivity and instrumental reflectivity is equal to 1, does not apply to RBRT. Using the derived models of radiation thermometry, the uncertainty of radiation thermometry due to the uncertainty of spectral emissivity was analysed by simulated worst-case measurements through temperature ranges of various radiation thermometers. This newly developed model for RBRT with known uncertainty of measurement enables traceable measurements using radiation thermometry under any conditions.
The Effect of Collector Shading and Masking on Optimized PV Field Designs
Photovoltaic (PV) solar fields are deployed with multiple rows. The second and subsequent rows are subject to shading and masking by the rows in front. The direct beam incident radiation on the second row is affected by shading and the diffuse incident radiation is affected by masking, expressed by sky view factor. Hence, all rows, besides the first one, receive lower incident radiation. The design of PV fields must take into account the decrease in the incident radiation caused by these two effects. The paper investigates by simulation the annual incident diffuse, direct beam and global radiation on the first and on the second row for optimized PV fields at two sites: Tel Aviv, Israel, with low diffuse component, and Lindenberg–Germany monitoring station, with a high diffuse component. The study emphasizes the importance of the diffuse incident radiation on the energy loss of the PV field. The percentage annual global energy loss due to shading and masking on the second row amounts to 1.49% in Tel Aviv and 0.46% in Lindenberg. Isotropic and anisotropic diffuse models were considered. The calculated diffuse incident energy for the isotropic model is lower than the values for anisotropic model by about 8% in Tel Aviv and 3.75% in Lindenberg.
Study on Solar Radiation Models in South Korea for Improving Office Building Energy Performance Analysis
Hourly global solar radiation in a weather file is one of the significant parameters for improving building energy performance analyses using simulation programs. However, most weather stations worldwide are not equipped with solar radiation sensors because they tend to be difficult to manage. In South Korea, only twenty-two out of ninety-two weather stations are equipped with sensors, and there are large areas not equipped with any sensors. Thus, solar radiation must often be calculated by reliable solar models. Hence, it is important to find a reliable model that can be applied in the wide variety of weather conditions seen in South Korea. In this study, solar radiation in the southeastern part of South Korea was calculated using three solar models: cloud-cover radiation model (CRM), Zhang and Huang model (ZHM), and meteorological radiation model (MRM). These values were then compared to measured solar radiation data. After that, the calculated solar radiation data from the three solar models were used in a building energy simulation for an office building with various window characteristics conditions, in order to identify how solar radiation differences affect building energy performance. It was found that a seasonal solar model for the area should be developed to improve building energy performance analysis.
Diverse polarization angle swings from a repeating fast radio burst source
Fast radio bursts (FRBs) are millisecond-duration radio transients 1 , 2 of unknown origin. Two possible mechanisms that could generate extremely coherent emission from FRBs invoke neutron star magnetospheres 3 – 5 or relativistic shocks far from the central energy source 6 – 8 . Detailed polarization observations may help us to understand the emission mechanism. However, the available FRB polarization data have been perplexing, because they show a host of polarimetric properties, including either a constant polarization angle during each burst for some repeaters 9 , 10 or variable polarization angles in some other apparently one-off events 11 , 12 . Here we report observations of 15 bursts from FRB 180301 and find various polarization angle swings in seven of them. The diversity of the polarization angle features of these bursts is consistent with a magnetospheric origin of the radio emission, and disfavours the radiation models invoking relativistic shocks. Polarization observations of the fast radio burst FRB 180301 with the FAST radio telescope show diverse polarization angle swings, consistent with a magnetospheric origin of the emission.
Actinometric System Aboard the Yak-42D “Roshydromet” Research Aircraft
The actinometric system installed aboard the Yak-42D \"Roshydromet\" research aircraft is presented. It is designed to study radiation processes in the troposphere. The system is based on standard Kipp&Zonen actinometric instruments for measuring solar, thermal, and ultraviolet radiation fluxes as well as on specially developed radiation models with high-precision methods for solving radiative transfer equations (Monte Carlo, k-distribution, and line-by-line calculations). The combination of actinometric measurements and detailed simulation of radiative transfer in the atmosphere allows examining the radiation balance components throughout the troposphere using in situ measurements at the aircraft location. Some results of studying radiation fluxes obtained during the flights over the Arctic region of the Russian Federation are presented. The data of measurements carried out using the presented system are useful for validating radiation codes utilized in general atmospheric circulation models and for processing satellite remote sensing data.
Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications
Our growing understanding of the plant tree of life provides a novel opportunity to uncover the major drivers of angiosperm diversity. Using a time-calibrated phylogeny, we characterized hot and cold spots of lineage diversification across the angiosperm tree of life by modeling evolutionary diversification using stepwise AIC (MEDUSA). We also tested the whole-genome duplication (WGD) radiation lag-time model, which postulates that increases in diversification tend to lag behind established WGD events. Diversification rates have been incredibly heterogeneous throughout the evolutionary history of angiosperms and reveal a pattern of ‘nested radiations’ – increases in net diversification nested within other radiations. This pattern in turn generates a negative relationship between clade age and diversity across both families and orders. We suggest that stochastically changing diversification rates across the phylogeny explain these patterns. Finally, we demonstrate significant statistical support for the WGD radiation lag-time model. Across angiosperms, nested shifts in diversification led to an overall increasing rate of net diversification and declining relative extinction rates through time. These diversification shifts are only rarely perfectly associated with WGD events, but commonly follow them after a lag period.
A comparative study of thermal radiation model in Chinese solar greenhouse
The performance of three widely used thermal radiation models, the P-1 model, the surface-to-surface (S2S) model and the Discrete-Ordinates (DO) model, were evaluated for simulation temperature in Chinses solar greenhouse. The thermal radiation models were evaluated by comparing the numerical results with experimental data at representative points in the CSG. For indoor rear wall, the indoor soil and indoor air, the models showed good agreement between the experimental data and the simulated results correspond to P1, S2S and DO respectively. This work provides information for simulate greenhouse temperature and use specific radiation models for the most suitable thermal environment for crop growth.
Estimation of Diffuse Solar Radiation Models for a Tropical Site in Nigeria
Knowledge of solar radiation and its components in a particular area is crucial in studying solar energy and constructing solar energy devices due to the many advantages solar radiation has over fossil fuels. In this two-year study, conducted at a tropical site in Ile-Ife, Nigeria, from January 2016 to December 2017, twenty-one empirical models were proposed to estimate diffuse solar radiation using continuous solar radiation data. The models were divided into five groups and developed using relative sunshine duration and/or clearness index as input variables. The performance of five models from the literature was also examined and compared to measured data. The models' performance was evaluated using the Akaike Information Criteria (AIC), the Global Performance Index (GPI), and various statistical errors. Model 11, a quadratic model with clearness index as an input variable, had the lowest AIC (1.8098), AICC (4.8099), ∆AICC (0.0000), and GPI (− 2.1796) values and was the most accurate model for estimating diffuse solar radiation at the study site and other locations with similar climatic conditions. None of the models selected from the literature was suitable for estimating diffuse solar radiation at the study site; hence, the proposed models performed better.
Can Topographic Effects on Solar Radiation Be Ignored: Evidence From the Tibetan Plateau
The effect of topography on shortwave downward radiation (SWDR) is interest in the geoscience. However, such effects are rarely quantiatively and systematically evalulated, especially over the Tibetan Plateau region. With the geostationaly satellite measurements and topographic radiation model, this study reveals a heightened significance of topography on SWDR with increasing slope. Particularly in abrupt terrain (slopes >15°) the impact becomes pronounced, wherein the topographic radiative forcing (TRF) contributes 9.5% of the annual‐average SWDR. And the ratio of TRF to SWDR reaches a peak during winter, exceeding 150%. In annual‐average scales, the SWDR is 169 ± 38.4 W/m2 and the corresponding TRF is 16.2 ± 22.6 W/m2. Seasonal variations manifest on northern and southern slopes, with the sourthern slopes significant in summer, while the northern ones significant in winter. Notably, topographic effects persist across spatial scales and remain evident at 5 km resolution, emphasizing the necessity of considering topography in SWDR product utilization. Plain Language Summary Shortwave downward radiation is the main source of surface energy. In mountainous areas, the terrain significantly alters the amount of received SWDR. This study comrephensively examines the topographic influence on SWDR across the Tibetan Plateau for the first time. We investigate the influence of diverse topographic factors on the distribution of surface shortwave radiation in mountainous terrains. With the slope increasing, the impact of topography on SWDR becomes more and more significant. The topographic impact of northern and sourthern slopes behaves obvious seasonal variations, with the sourthern slopes significant in summer, while the northern ones significant in winter. With the increasing of spatial scale, the topographic effect gradually decreases and tends to be stable, but it can never disappear. As remote sensing data resolution coarsens, topographic radiative forcing diminishes, but even at 5 km resolution, terrain significantly affects SWDR distribution. Key Points In abrupt slopes, the annual‐average proportion of topographic radiative forcing to shortwave downward radiation (SWDR) can reach up to 9.5% The proportion of topographic radiative forcing to SWDR exceeding 150% in winter on the northern slopes Despite decreasing influence with coarser spatial resolutions, topographic effects persist even at 5 km
On the Cluster Scales of Hydrometeors in Mixed‐Phase Stratiform Clouds
Mixed‐phase stratiform clouds contain numerous liquid, mixed‐phase, and ice clusters, quantifying the cluster scales is potentially helpful to improve the parameterizations of microphysics and radiation models. However, the scales of hydrometeor clusters at different levels of stratiform clouds are not well understood. In this study, using airborne measurements and a large eddy simulation, we show that turbulence plays an important role in controlling the clusters with length of a few hundred meters, while the scales of larger clusters have stronger vertical variations from cloud base to top. The liquid clusters are the largest near the cloud top, while the lengths of ice clusters decrease from cloud base to top. The lengths of mixed‐phase clusters depend on the glaciation process, a faster glaciation results in smaller mixed‐phase clusters. The results improve our understanding on how the liquid and ice are mixed at different levels in stratiform clouds. Plain Language Summary Mixed‐phase clouds are vital to the global radiative balance and water cycle. The coexistence of liquid and ice, and the way they mix have significant impacts on the cloud microphysical properties. Observations suggest hydrometeors organize in clusters in mixed‐phase stratiform clouds, while such inhomogeneity is still poorly represented in models. In this study, using airborne measurements and model simulation, we analyzed the scales of liquid, mixed‐phase, and ice clusters at different levels in a stratiform cloud observed in Northeast China. The results suggest turbulence controls the scale of clusters with length of a few hundred meters, while larger clusters have stronger vertical variations. The results improve our understanding on the cluster scales of hydrometeors at different levels in stratiform clouds, and are potentially helpful to improve the parameterizations of microphysics and radiation. Key Points Turbulence plays an important role in controlling the scale of hydrometeor clusters The scales of liquid, mixed‐phase, and ice clusters have different height dependencies from cloud top to base A faster glaciation process results in smaller mixed‐phase clusters