Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
12,705
result(s) for
"Radio wave"
Sort by:
Radio Propagation Measurement and Channel Modelling
by
Salous, Sana
in
Aerospace
,
Communication, Networking and Broadcast Technologies
,
Components, Circuits, Devices and Systems
2013
A practical guide to radio channel measurement techniques Whilst there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, few contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. This work redresses that balance. Beginning with an explanation of the fundamentals of radio wave propagation, the book progresses through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies, data analysis techniques and radio channel modelling. Application of results for the prediction of achievable digital link performance are discussed with examples pertinent to single carrier, multi-carrier and spread spectrum radio links. It addresses specifics of communications in various different frequency bands for both long range and short range fixed and mobile radio links.
Key features: Focuses on radio channel measurements and characterization with analysis of MIMO channels Discusses the physical and technical considerations involved in the proper assessment of radio channel characteristics for efficient radio system planning, design, and implementation Provides in-depth information on the planning of experiments and the detailed analysis of measured data from radio propagation and channel modelling Unique practical approach describing how to design and implement channel sounders
The 6 September 2017 X-Class Solar Flares and Their Impacts on the Ionosphere, GNSS, and HF Radio Wave Propagation
2018
On 6 September 2017, the Sun emitted two significant solar flares (SFs). The first SF, classified X2.2, peaked at 09:10 UT. The second one, X9.3, which is the most intensive SF in the current solar cycle, peaked at 12:02 UT and was accompanied by solar radio emission. In this work, we study ionospheric response to the two X-class SFs and their impact on the Global Navigation Satellite Systems and high-frequency (HF) propagation. In the ionospheric absolute vertical total electron content (TEC), the X2.2 SF caused an overall increase of 2-4 TECU on the dayside. The X9.3 SF produced a sudden increase of~8-10 TECU at midlatitudes and of~15-16 TECU enhancement at low latitudes. These vertical TEC enhancements lasted longer than the duration of the EUV emission. In TEC variations within 2-20 min range, the two SFs provoked sudden increases of~0.2 TECU and 1.3 TECU. Variations in TEC from geostationary and GPS/GLONASS satellites show similar results with TEC derivative of~1.3-1.7 TECU/min for X9.3 and 0.18-0.24 TECU/min for X2.2 in the subsolar region. Further, analysis of the impact of the two SFs on the Global Navigation Satellite Systems-based navigation showed that the SF did not cause losses-of-lock in the GPS, GLONASS, or Galileo systems, while the positioning error increased by~3 times in GPS precise point positioning solution. The two X-class SFs had an impact on HF radio wave propagation causing blackouts at <30 MHz in the subsolar region and <15 MHz in the postmidday sector.
Journal Article
Heavy-element production in a compact object merger observed by JWST
by
Kann, David Alexander
,
D’Avanzo, Paolo
,
Le Floc’h, Emeric
in
639/33/34/4118
,
639/33/34/864
,
ASTRONOMY AND ASTROPHYSICS
2024
The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)
1
, sources of high-frequency gravitational waves (GWs)
2
and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (the
r
-process)
3
. Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers
4
–
6
and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs.
7
–
12
). We obtained James Webb Space Telescope (JWST) mid-infrared imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns, which we interpret as tellurium (atomic mass
A
= 130) and a very red source, emitting most of its light in the mid-infrared owing to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create
r
-process elements across a broad atomic mass range and play a central role in heavy-element nucleosynthesis across the Universe.
Observations from the JWST of the second brightest GRB ever detected, GRB 230307A, indicate that it belongs to the class of long-duration GRBs resulting from compact object mergers, with the decay of lanthanides powering the longlasting optical and infrared emission.
Journal Article
Quantitative analysis of nighttime effects of radiation belt energetic electron precipitation on the D-region ionosphere during lower solar activity periods
2025
Energetic electron precipitation (EEP) from the Earth's radiation belts can ionize neutral molecules in the D-region ionosphere (60–90 km altitude), significantly influencing the conductivity and chemical species therein. However, due to the limited resolution of space-borne instruments, the energy and fluxes of electrons that truly precipitate into the atmosphere still remain poorly investigated. To resolve this problem, in this study, we have utilized the wave and particle data measured by the Electric Field Detector (EFD) and High-Energy Particle Detector (HEPP) on board the China Seismo-Electromagnetic Satellite (CSES-01) during nighttime conditions between 2019 and 2021. Using the measurements of extremely low frequency (ELF) waves, we have derived the reflection height of the D-region ionosphere, which turn out to be highly consistent with the electron and X-ray measurements of the CSES. Our results show that the influence of EEP on the two hemispheres is asymmetric: the reflection height in the Northern Hemisphere is in general lowered by 2.5 km, while that in the Southern Hemisphere is lowered by 1.5 km, both of which are consistent with first-principles chemical simulations. We have also found that the decrease in reflection height exhibits strong seasonal variation, which appears to be stronger during wintertime and relatively weaker during summertime. This seasonal difference is likely related to the variation of the background ionospheric electron density. Our findings provide a quantitative understanding of how EEP influences the lower ionosphere during solar minimum periods, which is critical for understanding the magnetosphere–ionosphere coupling and assessing the impact on radio wave propagation.
Journal Article
Day to night shift in reflection height of VLF radio waves derived from IRI model electron density models
by
Madhavilatha, Tirumalaraju
,
Naidu, Pyla Peddi
,
Devi, Malladi Indira
in
Accuracy
,
Atmospheric Sciences
,
D region
2023
The Very Low Frequency (VLF) radio wave propagation characteristics play a very important role in understanding the behaviour of the D-region. The earth-ionosphere wave guide theory has been used to evaluate the reflection height of VLF radio waves using the electron density profiles obtained from the International Reference Ionosphere (IRI) 2012 and 2016 models. For calculating the conductivity parameter, two different collision frequency models have been used. The diurnal shift in reflection height of 16-kHz VLF waves is evaluated for the midpoint of Visakhapatnam-Rugby path using the two IRI models and the results are compared with those values derived from VLF phase measurements made at Visakhapatnam. The theoretically evaluated values using the FT-2001 option for the D-region electron density profile in the IRI-2012 and IRI–2016 models are in good agreement with those obtained from phase measurements, especially in summer. The day to night shift in reflection height obtained using exponential collision critical frequency model are in good agreement with those derived from VLF phase measurements. The diurnal shift in reflection height of VLF radio waves during winter months derived from IRI models are much lower than those obtained from measurements.
Journal Article
Bridging the Gap Between the Earth's Ionosphere and Plasmasphere
2025
Cold plasma distribution in the ionosphere‐plasmasphere system governs wave‐particle interactions, plasma energization and loss, and radio wave propagation. A longstanding observational gap at altitudes ∼ ${\\sim} $800–8,000 km has largely prevented studying the coupled dynamics of the two regions. Here, we show that observations by JAXA's Arase mission can bridge this gap. Electron densities inferred from the upper hybrid resonance frequencies measured by Arase are highly consistent with radio occultation profiles from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission, with a median difference of ∼ ${\\sim} $5%. Using the combined COSMIC‐Arase data set, we provide a convenient way to reconcile the two regions in empirical models based on the analytical Chapman function inversion for scale height. Our results enable studying fundamental questions about the ionosphere‐plasmasphere coupling, their transition, and life cycle of cold plasma in near‐Earth space.
Journal Article
Climatology of GPS signal loss observed by Swarm satellites
2018
By using 3-year global positioning system (GPS) measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20∘ magnetic latitude (MLAT) and high latitudes above 60∘ MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20∘, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL) widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver. Keywords. Ionosphere (equatorial ionosphere; ionospheric irregularities) – radio science (radio wave propagation)
Journal Article