Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,268
result(s) for
"Radiometers"
Sort by:
Daily High-Resolution-Blended Analyses for Sea Surface Temperature
by
Schlax, Michael G.
,
Liu, Chunying
,
Smith, Thomas M.
in
Advanced Very High Resolution Radiometer
,
Advanced very high resolution radiometers
,
Bias
2007
Two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI). The analyses have a spatial grid resolution of 0.25° and a temporal resolution of 1 day. One product uses the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite SST data. The other uses AVHRR and Advanced Microwave Scanning Radiometer (AMSR) on the NASA Earth Observing System satellite SST data. Both products also use in situ data from ships and buoys and include a large-scale adjustment of satellite biases with respect to the in situ data. Because of AMSR’s near-all-weather coverage, there is an increase in OI signal variance when AMSR is added to AVHRR. Thus, two products are needed to avoid an analysis variance jump when AMSR became available in June 2002. For both products, the results show improved spatial and temporal resolution compared to previous weekly 1° OI analyses.
The AVHRR-only product uses Pathfinder AVHRR data (currently available from January 1985 to December 2005) and operational AVHRR data for 2006 onward. Pathfinder AVHRR was chosen over operational AVHRR, when available, because Pathfinder agrees better with the in situ data. The AMSR–AVHRR product begins with the start of AMSR data in June 2002. In this product, the primary AVHRR contribution is in regions near land where AMSR is not available. However, in cloud-free regions, use of both infrared and microwave instruments can reduce systematic biases because their error characteristics are independent.
Journal Article
An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration
2021
The nighttime light (NTL) satellite data have been widely used to investigate the urbanization process. The Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) stable nighttime light data and Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) nighttime light data are two widely used NTL datasets. However, the difference in their spatial resolutions and sensor design requires a cross-sensor calibration of these two datasets for analyzing a long-term urbanization process. Different from the traditional cross-sensor calibration of NTL data by converting NPP-VIIRS to DMSP-OLS-like NTL data, this study built an extended time series (2000–2018) of NPP-VIIRS-like NTL data through a new cross-sensor calibration from DMSP-OLS NTL data (2000–2012) and a composition of monthly NPP-VIIRS NTL data (2013–2018). The proposed cross-sensor calibration is unique due to the image enhancement by using a vegetation index and an auto-encoder model. Compared with the annual composited NPP-VIIRS NTL data in 2012, our product of extended NPP-VIIRS-like NTL data shows a good consistency at the pixel and city levels with R2 of 0.87 and 0.95, respectively. We also found that our product has great accuracy by comparing it with DMSP-OLS radiance-calibrated NTL (RNTL) data in 2000, 2004, 2006, and 2010. Generally, our extended NPP-VIIRS-like NTL data (2000–2018) have an excellent spatial pattern and temporal consistency which are similar to the composited NPP-VIIRS NTL data. In addition, the resulting product could be easily updated and provide a useful proxy to monitor the dynamics of demographic and socioeconomic activities for a longer time period compared to existing products. The extended time series (2000–2018) of nighttime light data is freely accessible at https://doi.org/10.7910/DVN/YGIVCD (Chen et al., 2020).
Journal Article
An update on the RTTOV fast radiative transfer model (currently at version 12)
by
Brunel, Pascal
,
Lupu, Cristina
,
Saunders, Roger
in
Atmospheric models
,
Computer simulation
,
Data assimilation
2018
This paper gives an update of the RTTOV (Radiative Transfer for TOVS) fast radiative transfer model, which is widely used in the satellite retrieval and data assimilation communities. RTTOV is a fast radiative transfer model for simulating top-of-atmosphere radiances from passive visible, infrared and microwave downward-viewing satellite radiometers. In addition to the forward model, it also optionally computes the tangent linear, adjoint and Jacobian matrix providing changes in radiances for profile variable perturbations assuming a linear relationship about a given atmospheric state. This makes it a useful tool for developing physical retrievals from satellite radiances, for direct radiance assimilation in NWP models, for simulating future instruments, and for training or teaching with a graphical user interface. An overview of the RTTOV model is given, highlighting the updates and increased capability of the latest versions, and it gives some examples of its current performance when compared with more accurate line-by-line radiative transfer models and a few selected observations. The improvement over the original version of the model released in 1999 is demonstrated.
Journal Article
The Fire Inventory from NCAR version 2.5: an updated global fire emissions model for climate and chemistry applications
by
Yokelson, Robert
,
McDonald-Buller, Elena C
,
Tang, Wenfu
in
Aerosols
,
Atmospheric chemistry
,
Atmospheric models
2023
We present the Fire Inventory from National Center for Atmospheric Research (NCAR) version 2.5 (FINNv2.5), a fire emissions inventory that provides publicly available emissions of trace gases and aerosols for various applications, including use in global and regional atmospheric chemistry modeling. FINNv2.5 includes numerous updates to the FINN version 1 framework to better represent burned area, vegetation burned, and chemicals emitted. Major changes include the use of active fire detections from the Visible Infrared Imaging Radiometer Suite (VIIRS) at 375 m spatial resolution, which allows smaller fires to be included in the emissions processing. The calculation of burned area has been updated such that a more rigorous approach is used to aggregate fire detections, which better accounts for larger fires and enables using multiple satellite products simultaneously for emissions estimates. Fuel characterization and emissions factors have also been updated in FINNv2.5. Daily fire emissions for many trace gases and aerosols are determined for 2002–2019 (Moderate Resolution Imaging Spectroradiometer (MODIS)-only fire detections) and 2012–2019 (MODIS + VIIRS fire detections). The non-methane organic gas emissions are allocated to the species of several commonly used chemical mechanisms. We compare FINNv2.5 emissions against other widely used fire emissions inventories. The performance of FINNv2.5 emissions as inputs to a chemical transport model is assessed with satellite observations. Uncertainties in the emissions estimates remain, particularly in Africa and South America during August–October and in southeast and equatorial Asia in March and April. Recommendations for future evaluation and use are given.
Journal Article
Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds
2010
In this paper, data from spaceborne radar, lidar and infrared radiometers on the “A‐Train” of satellites are combined in a variational algorithm to retrieve ice cloud properties. The method allows a seamless retrieval between regions where both radar and lidar are sensitive to the regions where one detects the cloud. We first implement a cloud phase identification method, including identification of supercooled water layers using the lidar signal and temperature to discriminate ice from liquid. We also include rigorous calculation of errors assigned in the variational scheme. We estimate the impact of the microphysical assumptions on the algorithm when radiances are not assimilated by evaluating the impact of the change in the area‐diameter and the density‐diameter relationships in the retrieval of cloud properties. We show that changes to these assumptions affect the radar‐only and lidar‐only retrieval more than the radar‐lidar retrieval, although the lidar‐only extinction retrieval is only weakly affected. We also show that making use of the molecular lidar signal beyond the cloud as a constraint on optical depth, when ice clouds are sufficiently thin to allow the lidar signal to penetrate them entirely, improves the retrieved extinction. When infrared radiances are available, they provide an extra constraint and allow the extinction‐to‐backscatter ratio to vary linearly with height instead of being constant, which improves the vertical distribution of retrieved cloud properties.
Journal Article
The Network for the Detection of Atmospheric Composition Change (NDACC): History, Status and Perspectives
by
Steinbrecht, Wolfgang
,
Nedoluha, Gerald
,
Lambert, Jean-Christopher
in
Absorption spectroscopy
,
Agreements
,
Air pollution
2018
The Network for the Detection of Atmospheric Composition Change (NDACC) is an international global network of more than 90 stations making high-quality measurements of atmospheric composition that began official operations in 1991 after 5 years of planning. Apart from sonde measurements, all measurements in the network are performed by ground-based remote-sensing techniques. Originally named the Network for the Detection of Stratospheric Change (NDSC), the name of the network was changed to NDACC in 2005 to better reflect the expanded scope of its measurements. The primary goal of NDACC is to establish long-term databases for detecting changes and trends in the chemical and physical state of the atmosphere (mesosphere, stratosphere, and troposphere) and to assess the coupling of such changes with climate and air quality. NDACC's origins, station locations, organizational structure, and data archiving are described. NDACC is structured around categories of ground-based observational techniques (sonde, lidar, microwave radiometers, Fourier-transform infrared, UV-visible DOAS (differential optical absorption spectroscopy)-type, and Dobson-Brewer spectrometers, as well as spectral UV radiometers), timely cross-cutting themes (ozone, water vapour, measurement strategies, cross-network data integration), satellite measurement systems, and theory and analyses. Participation in NDACC requires compliance with strict measurement and data protocols to ensure that the network data are of high and consistent quality. To widen its scope, NDACC has established formal collaborative agreements with eight other cooperating networks and Global Atmosphere Watch (GAW). A brief history is provided, major accomplishments of NDACC during its first 25 years of operation are reviewed, and a forward-looking perspective is presented.
Journal Article
Intercomparison in spatial distributions and temporal trends derived from multi-source satellite aerosol products
by
Peng, Yiran
,
Mahmood, Rashed
,
Sun, Lin
in
Advanced Very High Resolution Radiometer
,
Aerosol optical depth
,
Aerosol Robotic Network
2019
Satellite-derived aerosol products provide long-term and large-scale observations for analysing aerosol distributions and variations, climate-scale aerosol simulations, and aerosol–climate interactions. Therefore, a better understanding of the consistencies and differences among multiple aerosol products is important. The objective of this study is to compare 11 global monthly aerosol optical depth (AOD) products, which are the European Space Agency Climate Change Initiative (ESA-CCI) Advanced Along-Track Scanning Radiometer (AATSR), Advanced Very High Resolution Radiometer (AVHRR), Multi-angle Imaging SpectroRadiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Visible Infrared Imaging Radiometer (VIIRS), and POLarization and Directionality of the Earth's Reflectance (POLDER) products. AErosol RObotic NEtwork (AERONET) Version 3 Level 2.0 monthly measurements at 308 sites around the world are selected for comparison. Our results illustrate that the spatial distributions and temporal variations of most aerosol products are highly consistent globally but exhibit certain differences on regional and site scales. In general, the AATSR Dual View (ADV) and SeaWiFS products show the lowest spatial coverage with numerous missing values, while the MODIS products can cover most areas (average of 87 %) of the world. The best performance is observed in September–October–November (SON) and the worst is in June–July–August (JJA). All the products perform unsatisfactorily over northern Africa and Middle East, southern and eastern Asia, and their coastal areas due to the influence from surface brightness and human activities. In general, the MODIS products show the best agreement with the AERONET-based AOD values on different spatial scales among all the products. Furthermore, all aerosol products can capture the correct aerosol trends at most cases, especially in areas where aerosols change significantly. The MODIS products perform best in capturing the global temporal variations in aerosols. These results provide a reference for users to select appropriate aerosol products for their particular studies.
Journal Article
The Diurnal Cycle of Precipitation according to Multiple Decades of Global Satellite Observations, Three CMIP6 Models, and the ECMWF Reanalysis
by
Allan, Richard P.
,
Battaglia, Alessandro
,
Watters, Daniel
in
Amplitudes
,
Calibration
,
Climate
2021
NASA Precipitation Measurement Mission observations are used to evaluate the diurnal cycle of precipitation from three CMIP6 models (NCAR-CESM2, CNRM-CM6.1, CNRM-ESM2.1) and the ERA5 reanalysis. NASA’s global-gridded IMERG product, which combines spaceborne microwave radiometer, infrared sensor, and ground-based gauge measurements, provides high-spatiotemporal-resolution (0.1° and half-hourly) estimates that are suitable for evaluating the diurnal cycle in models, as determined against the ground-based radar network over the conterminous United States. IMERG estimates are coarsened to the spatial and hourly resolution of the state-of-the-art CMIP6 and ERA5 products, and their diurnal cycles are compared across multiple decades of June–August in the 60°N–60°S domain (IMERG and ERA5: 2000–19; NCAR and CNRM: 1979–2008). Low-precipitation regions (and weak-amplitude regions when analyzing the diurnal phase) are excluded from analyses so as to assess only robust diurnal signals. Observations identify greater diurnal amplitudes over land (26%–134% of the precipitation mean; 5th–95th percentile) than over ocean (14%–66%). ERA5, NCAR, and CNRM underestimate amplitudes over ocean, and ERA5 overestimates over land. IMERG observes a distinct diurnal cycle only in certain regions, with precipitation peaking broadly between 1400 and 2100 LST over land (2100–0600 LST over mountainous and varying-terrain regions) and 0000 and 1200 LST over ocean. The simulated diurnal cycle is unrealistically early when compared with observations, particularly over land (NCAR-CESM2 AMIP:−1 h; ERA5: −2 h; CNRM-CM6.1 AMIP: −4 h on average) with nocturnal maxima not well represented over mountainous regions. Furthermore, ERA5’s representation of the diurnal cycle is too simplified, with less interannual variability in the time of maximum relative to observations over many regions.
Journal Article
Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019
2021
A consistently processed annual global nighttime lights time series (2012–2019) was produced using monthly cloud-free radiance averages made from low light imaging day/night band (DNB) data collected by the NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS). The processing steps are modified from the original methods developed to produce annual nighttime lights products from nightly data. Only two years of VIIRS nighttime lights (VNL) were produced with the V.1 methods: 2015 and 2016. Here we report on methods used to produce a V.2 VNL time series from the monthly averages with filtering to remove extraneous features such as biomass burning, aurora, and background. In this case, outlier removal is achieved with a twelve-month median, which discards high and low radiance outliers, thus isolating the background to a narrow range of radiances under 1 nW/cm2/sr. Background areas with no detectable lighting are further isolated using a statistical measure of texture, 3 × 3 data range (DR). The DR threshold for zeroing out background rises as the number of cloud-free observations falls. The V.2 method extends the temporal leverage in the noise filtering by developing the DR threshold from a multiyear maximum DR and a multiyear percent cloud-free grid. Additional noise filtering is achieved by zeroing out grid cells that have low average radiances (<0.6 nW/cm2/sr) and detection in only one or two years out of eight. The spatial extent and average radiance levels are compared for the V.1 and V.2 2015 VNL. For the vast majority of grid cells, the average radiances are nearly the same in the two products. However, the V.2 product has more areas of dim lighting detected. The key advantages of the V.2 time series include consistent processing and threshold levels across all years, thus optimizing the set for change detection analyses.
Journal Article
Characterizing the rate of spread of large wildfires in emerging fire environments of northwestern Europe using visible infrared imaging radiometer suite active fire data
by
Quiñones, Tomás
,
Little, Kerryn
,
Ramirez, Joaquín R
in
Climate change
,
Energy consumption
,
Fire behavior
2023
In recent years fires of greater magnitude have been documented throughout northwest Europe. With several climate projections indicating future increases in fire activity in this temperate area, it is imperative to identify the status of fire in this region. This study unravels unknowns about the state of the fire regime in northwest Europe by characterizing one of the key aspects of fire behavior, the rate of spread (ROS). Using an innovative approach to cluster Visible Infrared Imaging Radiometer Suite (VIIRS) hotspots into fire perimeter isochrones to derive ROS, we identify the effects of land cover and season on the rate of spread of 102 landscape fires that occurred between 2012 and 2022. Results reveal significant differences between land cover types, and there is a clear peak of ROS and burned area in the months of March and April. Median ROS within these peak months is approximately 0.09 km h−1 during a 12 h overpass, and 66 % of the burned area occurs in this spring period. Heightened ROS and burned area values persist in the bordering months of February and May, suggesting that these months may present the extent of the main fire season in northwest Europe. Accurate data on ROS among the represented land cover types, as well as periods of peak activity, are essential for determining periods of elevated fire risk, the effectiveness of available suppression techniques, and appropriate mitigation strategies (land and fuel management).
Journal Article