Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
217 result(s) for "Radiometric resolution"
Sort by:
Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2
The Landsat series has marked the history of Earth observation by performing the longest continuous imaging program from space. The recent Landsat-9 carrying Operational Land Imager 2 (OLI-2) captures a higher dynamic range than sensors aboard Landsat-8 or Sentinel-2 (14-bit vs. 12-bit) that can potentially push forward the frontiers of aquatic remote sensing. This potential stems from the enhanced radiometric resolution of OLI-2, providing higher sensitivity over water bodies that are usually low-reflective. This study performs an initial assessment on retrieving water quality parameters from Landsat-9 imagery based on both physics-based and machine learning modeling. The concentration of chlorophyll-a (Chl-a) and total suspended matter (TSM) are retrieved based on physics-based inversion in four Italian lakes encompassing oligo to eutrophic conditions. A neural network-based regression model is also employed to derive Chl-a concentration in San Francisco Bay. We perform a consistency analysis between the constituents derived from Landsat-9 and near-simultaneous Sentinel-2 imagery. The Chl-a and TSM retrievals are validated using in situ matchups. The results indicate relatively high consistency among the water quality products derived from Landsat-9 and Sentinel-2. However, the Landsat-9 constituent maps show less grainy noise, and the matchup validation indicates relatively higher accuracies obtained from Landsat-9 (e.g., TSM R2 of 0.89) compared to Sentinel-2 (R2 = 0.71). The improved constituent retrieval from Landsat-9 can be attributed to the higher signal-to-noise (SNR) enabled by the wider dynamic range of OLI-2. We performed an image-based SNR estimation that confirms this assumption.
A method for ocean front enhancement and automatic detection of SAR data
The study on enhancing the radial resolution of SAR images and automatically detecting ocean fronts based on the gradient of backward scattering coefficient (sigma0) can significantly enhance the application potential of SAR satellite systems. In this paper, we qualitatively and quantitatively analyze the impact of radiometric resolution enhancement using data acquired by China’s Gaofen-3 SAR satellite from two different views: southwest and southeast Taiwan Island. The combination of 5*5 Enlee filtering and 10*10 multi-view processing is found to be more effective than separate filtering and multi-viewing, achieving a reduction in STD of over 20% and an increase in ENL of over 85%. Additionally, we automatically detect and characterize ocean fronts using their distinctive parameters. Moreover, the angle between the two fronts and the corresponding nearest near-surface wind field exceeds 23°. However, both align well with the temperature gradient, indicating that they are temperature fronts rather than wind field shear. These findings provide valuable insights for designing China’s SAR satellites and understanding marine environments.
Fusion of Drone-Based RGB and Multi-Spectral Imagery for Shallow Water Bathymetry Inversion
Shallow bathymetry inversion algorithms have long been applied in various types of remote sensing imagery with relative success. However, this approach requires that imagery with increased radiometric resolution in the visible spectrum be available. The recent developments in drones and camera sensors allow for testing current inversion techniques on new types of datasets with centimeter resolution. This study explores the bathymetric mapping capabilities of fused RGB and multispectral imagery as an alternative to costly hyperspectral sensors for drones. Combining drone-based RGB and multispectral imagery into a single cube dataset provides the necessary radiometric detail for shallow bathymetry inversion applications. This technique is based on commercial and open-source software and does not require the input of reference depth measurements in contrast to other approaches. The robustness of this method was tested on three different coastal sites with contrasting seafloor types with a maximum depth of six meters. The use of suitable end-member spectra, which are representative of the seafloor types of the study area, are important parameters in model tuning. The results of this study are promising, showing good correlation (R2 > 0.75 and Lin’s coefficient > 0.80) and less than half a meter average error when they are compared with sonar depth measurements. Consequently, the integration of imagery from various drone-based sensors (visible range) assists in producing detailed bathymetry maps for small-scale shallow areas based on optical modelling.
Multidecadal observations of the Antarctic ice sheet from restored analog radar records
Airborne radar sounding can measure conditions within and beneath polar ice sheets. In Antarctica, most digital radar-sounding data have been collected in the last 2 decades, limiting our ability to understand processes that govern longer-term ice-sheet behavior. Here, we demonstrate how analog radar data collected over 40 y ago in Antarctica can be combined with modern records to quantify multidecadal changes. Specifically, we digitize over 400,000 line kilometers of exploratory Antarctic radar data originally recorded on 35-mm optical film between 1971 and 1979. We leverage the increased geometric and radiometric resolution of our digitization process to show how these data can be used to identify and investigate hydrologic, geologic, and topographic features beneath and within the ice sheet. To highlight their scientific potential, we compare the digitized data with contemporary radar measurements to reveal that the remnant eastern ice shelf of Thwaites Glacier in West Antarctica had thinned between 10 and 33% between 1978 and 2009. We also release the collection of scanned radargrams in their entirety in a persistent public archive along with updated geolocation data for a subset of the data that reduces the mean positioning error from 5 to 2.5 km. Together, these data represent a unique and renewed extensive, multidecadal historical baseline, critical for observing and modeling ice-sheet change on societally relevant timescales.
Recent Developments in Satellite Remote Sensing for Air Pollution Surveillance in Support of Sustainable Development Goals
Air pollution is an integral part of climatic, environmental, and socioeconomic current affairs and a cross-cutting component of certain United Nations Sustainable Development Goals (SDGs). Hence, reliable information on air pollution and human exposure is a crucial element in policy recommendations and decisions. At the same time, Earth Observation is steadily gaining confidence as a data input in the calculation of various SDG indicators. The current paper focuses on the usability of modern satellite remote sensing in the context of SDGs relevant to air quality. We introduce the socioeconomic importance of air quality and discuss the current uptake of geospatial information. The latest developments in Earth Observation provide measurements of finer spatial, temporal, and radiometric resolution products with increased global coverage, long-term continuation, and coherence in measurements. Leveraging on the two latest operational satellite technologies available, namely the Sentinel-5P and the Geostationary Environment Monitoring Spectrometer (GEMS) missions, we demonstrate two potential operational applications for quantifying air pollution at city and regional scales. Based on the two examples and by discussing the near-future anticipated geospatial capabilities, we showcase and advocate that the potential of satellite remote sensing as a, complementary to ground station networks, source of air pollution information is gaining confidence. As such, it can be an invaluable tool for quantifying global air pollution and deriving robust population exposure estimates.
The Future of Radar Space Observation in Europe—Major Upgrade of the Tracking and Imaging Radar (TIRA)
The use of near-Earth space has grown dramatically during the last decades, resulting in thousands of active and inactive satellites and a huge amount of space debris. To observe and monitor the near-Earth space environment, radar systems play a major role as they can be operated at any time and under any weather conditions. The Tracking and Imaging Radar (TIRA) is one of the largest space observation radars in the world. It consists of a 34m Cassegrain antenna, a precise tracking radar, and a high-resolution imaging radar. Since the 1990s, TIRA contributes to the field of space domain awareness by tracking and imaging space objects and by monitoring the debris population. Due to new technologies, modern satellites become smaller, and satellite extensions become more compact. Thus, sensitive high-resolution space observation systems are needed to detect, track, and image these space objects. To fulfill these requirements, TIRA is undergoing a major upgrade. The current imaging radar in the Ku band will be replaced by a new radar with improved geometrical and radiometric resolution operating in the Ka band. Due to its wideband fully polarimetric capability, the new imaging radar will increase the analysis and characterization of space objects. In addition, the tracking radar in the L band is also being currently refurbished. Through its novel modular structure and open design, highly flexible radar modes and precise tracking concepts can be efficiently implemented for enhanced space domain awareness. The new TIRA system will mark the start of a new era for space observation with radar in Europe.
Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization
Sparse signal processing has been used in synthetic aperture radar (SAR) imaging due to the maturity of compressed sensing theory. As a typical sparse reconstruction method, L1 regularization generally causes bias effects as well as ignoring region-based features. Our team has proposed to linearly combine the nonconvex penalty and the total variation (TV)-norm penalty as a compound regularizer in the imaging model, called nonconvex and TV regularization, which can not only reduce the bias caused by L1 regularization but also enhance point-based and region-based features. In this paper, we use the variable splitting scheme and modify the alternating direction method of multipliers (ADMM), generating a novel algorithm to solve the above optimization problem. Moreover, we analyze the radiometric properties of sparse-signal-processing-based SAR imaging results and introduce three indexes suitable for sparse SAR imaging for quantitative evaluation. In experiments, we process the Gaofen-3 (GF-3) data utilizing the proposed method, and quantitatively evaluate the reconstructed SAR image quality. Experimental results and image quality analysis verify the effectiveness of the proposed method in improving the reconstruction accuracy and the radiometric resolution without sacrificing the spatial resolution.
Multisite and Multitemporal Grassland Yield Estimation Using UAV-Borne Hyperspectral Data
Grassland ecosystems can be hotspots of biodiversity and act as carbon sinks while at the same time providing the basis of forage production for ruminants in dairy and meat production. Annual grassland dry matter yield (DMY) is one of the most important agronomic parameters reflecting differences in usage intensity such as number of harvests and fertilization. Current methods for grassland DMY estimation are labor-intensive and prone to error due to small sample size. With the advent of unmanned aerial vehicles (UAVs) and miniaturized hyperspectral sensors, a novel tool for remote sensing of grassland with high spatial, temporal and radiometric resolution and coverage is available. The present study aimed at developing a robust model capable of estimating grassland biomass across a gradient of usage intensity throughout one growing season. Therefore, UAV-borne hyperspectral data from eight grassland sites in North Hesse, Germany, originating from different harvests, were utilized for the modeling of fresh matter yield (FMY) and DMY. Four machine learning (ML) algorithms were compared for their modeling performance. Among them, the rule-based ML method Cubist regression (CBR) performed best, delivering high prediction accuracies for both FMY (nRMSEp 7.6%, Rp2 0.87) and DMY (nRMSEp 12.9%, Rp2 0.75). The model showed a high robustness across sites and harvest dates. The best models were employed to produce maps for FMY and DMY, enabling the detailed analysis of spatial patterns. Although the complexity of the approach still restricts its practical application in agricultural management, the current study proved that biomass of grassland sites being subject to different management intensities can be modeled from UAV-borne hyperspectral data at high spatial resolution with high prediction accuracies.
On the radiometric resolution of SAR signals
In accordance with the provisions of the theory of statistical decisions, an expression for the error probability of discriminating the intensities of two signals as a function of the radiometric resolution of a synthetic aperture radar is obtained. The result of observing fluctuations at the input of the processing channel over a finite interval is represented by a sequence of complex samples that are the sum of samples of uncorrelated normal noise and signal samples. This sequence is considered as a normal complex random vector with a specified normalized correlation matrix, while the processing algorithm is assumed to be given. The proposed approach is compared with known methods for determining the radiometric resolution: the heuristic method and the differential radio contrast method. The advantages of the proposed method are demonstrated.
Relative Radiometric Normalization for the PlanetScope Nanosatellite Constellation Based on Sentinel-2 Images
Detecting and characterizing continuous changes on Earth’s surface has become critical for planning and development. Since 2016, Planet Labs has launched hundreds of nanosatellites, known as Doves. Despite the advantages of their high spatial and temporal resolution, these nanosatellites’ images still present inconsistencies in radiometric resolution, limiting their broader usability. To address this issue, a model for radiometric normalization of PlanetScope (PS) images was developed using Multispectral Instrument/Sentinel-2 (MSI/S2) sensor images as a reference. An extensive database was compiled, including images from all available versions of the PS sensor (e.g., PS2, PSB.SD, and PS2.SD) from 2017 to 2022, along with data from various weather stations. The sampling process was carried out for each band using two methods: Conditioned Latin Hypercube Sampling (cLHS) and statistical visualization. Five machine learning algorithms were then applied, incorporating both linear and nonlinear models based on rules and decision trees: Multiple Linear Regression (MLR), Model Averaged Neural Network (avNNet), Random Forest (RF), k-Nearest Neighbors (KKNN), and Support Vector Machine with Radial Basis Function (SVM-RBF). A rigorous covariate selection process was performed for model application, and the models’ performance was evaluated using the following statistical indices: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Lin’s Concordance Correlation Coefficient (CCC), and Coefficient of Determination (R2). Additionally, Kruskal–Wallis and Dunn tests were applied during model selection to identify the best-performing model. The results indicated that the RF model provided the best fit across all PS sensor bands, with more accurate results in the longer wavelength bands (Band 3 and Band 4). The models achieved RMSE reflectance values of approximately 0.02 and 0.03 in these bands, with R2 and CCC ranging from 0.77 to 0.90 and 0.87 to 0.94, respectively. In summary, this study makes a significant contribution to optimizing the use of PS sensor images for various applications by offering a detailed and robust approach to radiometric normalization. These findings have important implications for the efficient monitoring of surface changes on Earth, potentially enhancing the practical and scientific use of these datasets.