Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
260,506 result(s) for "Rats"
Sort by:
Efficient derivation of knock-out and knock-in rats using embryos obtained by in vitro fertilization
Rats are effective model animals and have contributed to the development of human medicine and basic research. However, the application of reproductive engineering techniques to rats is not as advanced compared with mice, and genome editing in rats has not been achieved using embryos obtained by in vitro fertilization (IVF). In this study, we conducted superovulation, IVF, and knock out and knock in using IVF rat embryos. We found that superovulation effectively occurred in the synchronized oestrus cycle and with anti-inhibin antiserum treatment in immature rats, including the Brown Norway rat, which is a very difficult rat strain to superovulate. Next, we collected superovulated oocytes under anaesthesia, and offspring derived from IVF embryos were obtained from all of the rat strains that we examined. When the tyrosinase gene was targeted by electroporation in these embryos, both alleles were disrupted with 100% efficiency. Furthermore, we conducted long DNA fragment knock in using adeno-associated virus and found that the knock-in litter was obtained with high efficiency (33.3–47.4%). Thus, in this study, we developed methods to allow the simple and efficient production of model rats.
The rat
Introduces the black rat, covering such topics as its long, agile tail (it's good for balancing and picking noses), long teeth (they can chew through anything, including books) and disgusting taste in food (delicious electrical wires in tomato sauce, anyone?).
Experimental rat models to study the metabolic syndrome
Being the metabolic syndrome a multifactorial condition, it is difficult to find adequate experimental models to study this pathology. The obese Zucker rats, which are homozygous for the fa allele, present abnormalities similar to those seen in human metabolic syndrome and are a widely extended model of insulin resistance. The usefulness of these rats as a model of non-insulin-dependent diabetes mellitus is nevertheless questionable, and they neither can be considered a clear experimental model of hypertension. Some experimental models different from the obese Zucker rats have also been used to study the metabolic syndrome. Some derive from the spontaneously hypertensive rats (SHR). In this context, the most important are the obese SHR, usually named Koletsky rats. Hyperinsulinism, associated with either normal or slightly elevated levels of blood glucose, is present in these animals, but SHR/N-corpulent rats are a more appropriated model of non-insulin-dependent diabetes mellitus. The SHR/NDmc corpulent rats, a subline of SHR/N-corpulent rats, also exhibit metabolic and histopathologic characteristics associated with human metabolic disorders. A new animal model of the metabolic syndrome, stroke-prone–SHR (SHRSP) fatty rats, was obtained by introducing a segment of the mutant leptin receptor gene from the Zucker line heterozygous for the fa gene mutation into the genetic background of the SHRSP. Very recently, it has been developed as a non-obese rat model with hypertension, fatty liver and characteristics of the metabolic syndrome by transgenic overexpression of a sterol-regulatory element-binding protein in the SHR rats. The Wistar Ottawa Karlsburg W rats are also a new strain that develops a nearly complete metabolic syndrome. Moreover, a new experimental model of low-capacity runner rats has also been developed with elevated blood pressure levels together with the other hallmarks of the metabolic syndrome.
Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson’s disease pathogenesis
In Parkinson’s disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD. It is unclear if neuromelanin plays a role in Parkinson’s disease pathogenesis since common laboratory animals lack this pigment. Authors show here that overexpression of human tyrosinase in the substantia nigra of rats resulted in an age-dependent production of human-like neuromelanin within nigral dopaminergic neurons and is associated with a Parkinson’s disease phenotype when allowed to accumulate above a specific threshold.
SARS-CoV-2 Exposure in Norway Rats (Rattus norvegicus) from New York City
The host tropism expansion of SARS-CoV-2 raises concern for the potential risk of reverse-zoonotic transmission of emerging variants into rodent species, including wild rat species. In this study, we present both genetic and serological evidence for SARS-CoV-2 exposure to the New York City wild rat population, and these viruses may be linked to the viruses that were circulating during the early stages of the pandemic. Millions of Norway rats ( Rattus norvegicus ) inhabit New York City (NYC), presenting the potential for transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to rats. We evaluated SARS-CoV-2 exposure among 79 rats captured from NYC during the fall of 2021. Our results showed that 13 of the 79 rats (16.5%) tested IgG- or IgM-positive, and partial SARS-CoV-2 genomes were recovered from all 4 rats that were qRT-PCR (reverse transcription-quantitative PCR)-positive. Genomic analyses suggest these viruses were associated with genetic lineage B, which was predominant in NYC in the spring of 2020 during the early pandemic period. To further investigate rat susceptibility to SARS-CoV-2 variants, we conducted a virus challenge study and showed that Alpha, Delta, and Omicron variants can cause infections in wild-type Sprague Dawley (SD) rats, including high replication levels in the upper and lower respiratory tracts and induction of both innate and adaptive immune responses. Additionally, the Delta variant resulted in the highest infectivity. In summary, our results indicate that rats are susceptible to infection with Alpha, Delta, and Omicron variants, and wild Norway rats in the NYC municipal sewer systems have been exposed to SARS-CoV-2. Our findings highlight the need for further monitoring of SARS-CoV-2 in urban rat populations and for evaluating the potential risk of secondary zoonotic transmission from these rat populations back to humans. IMPORTANCE The host tropism expansion of SARS-CoV-2 raises concern for the potential risk of reverse-zoonotic transmission of emerging variants into rodent species, including wild rat species. In this study, we present both genetic and serological evidence for SARS-CoV-2 exposure to the New York City wild rat population, and these viruses may be linked to the viruses that were circulating during the early stages of the pandemic. We also demonstrated that rats are susceptible to additional variants (i.e., Alpha, Delta, and Omicron) that have been predominant in humans and that susceptibility to infection varies by variant. Our findings highlight the reverse zoonosis of SARS-CoV-2 to urban rats and the need for further monitoring of SARS-CoV-2 in rat populations for potential secondary zoonotic transmission to humans.