Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
153 result(s) for "Receptors, Leptin - therapeutic use"
Sort by:
Pharmacokinetics and pharmacodynamics of mibavademab (a leptin receptor agonist): Results from a first‐in‐human phase I study
Mibavademab (previously known as REGN4461), a fully human monoclonal antibody, is being investigated for the treatment of conditions associated with leptin deficiency. Here, we report pharmacokinetics (PKs), pharmacodynamics, and immunogenicity from a phase I study in healthy participants (NCT03530514). In part A, lean or overweight healthy participants were randomized to single‐ascending‐dose cohorts of 0.3, 1.0, 3.0, 10, and 30 mg/kg intravenous (i.v.), or 300 and 600 mg subcutaneous doses of mibavademab or placebo. In part B, overweight or obese participants were randomized to receive multiple doses of mibavademab (15 mg/kg i.v. loading dose and 10 mg/kg i.v. at weeks 3, 6, and 9) or placebo, stratified by body mass index and baseline leptin levels: low leptin (<5 ng/mL) or relatively low leptin (5–8 ng/mL in men and 5–24 ng/mL in women). Fifty‐six and 55 participants completed the single‐ascending‐dose and multiple‐dose parts, respectively. In the single‐ascending‐dose cohorts, mibavademab PKs were nonlinear with target‐mediated elimination, greater than dose‐proportional increases in exposure, and there were no dose‐dependent differences in total soluble leptin receptor (sLEPR) levels in serum over time. Following multiple‐dose administration of mibavademab in participants with leptin <8 ng/mL, lower mean mibavademab concentrations, higher mean total sLEPR concentrations, and larger mean decreases in body weight than in the relatively low leptin cohorts were observed. Baseline leptin was correlated with mibavademab PKs and pharmacodynamics. No treatment‐emergent anti‐mibavademab antibodies were observed in any mibavademab‐treated participant. Results from this study collectively inform further development of mibavademab to treat conditions associated with leptin deficiency.
Leptin/obR signaling exacerbates obesity-related neutrophilic airway inflammation through inflammatory M1 macrophages
Background Obesity-related asthma is a kind of nonallergic asthma with excessive neutrophil infiltration in the airways. However, the underlying mechanisms have been poorly elucidated. Among the adipokines related to obesity, leptin is related to the inflammatory response. However, little is understood about how leptin acts on the leptin receptor (obR) in neutrophilic airway inflammation in obesity-associated asthma. We explored the inflammatory effects of leptin/obR signaling in an obesity-related neutrophilic airway inflammation mouse model. Methods We established a neutrophilic airway inflammation mouse model using lipopolysaccharide (LPS)/ovalbumin (OVA) sensitization and OVA challenge (LPS + OVA/OVA) in lean, obese, or db/db (obR deficiency) female mice. Histopathological, bronchoalveolar lavage fluid (BALF) inflammatory cell, and lung inflammatory cytokine analyses were used to analyze airway inflammation severity. Western blotting, flow cytometry, reverse transcription‐polymerase chain reaction (RT-PCR), and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the underlying mechanisms. In vitro bone marrow‐derived macrophage (BMDM) and bone marrow-derived neutrophil experiments were performed. Results We found that the serum leptin level was higher in obese than in lean female mice. Compared to LPS/OVA + OVA-treated lean female mice, LPS/OVA + OVA-treated obese female mice had higher peribronchial inflammation levels, neutrophil counts, Th1/Th17-related inflammatory cytokine levels, M1 macrophage polarization levels, and long isoform obR activation, which could be decreased by the obR blockade (Allo-Aca) or obR deficiency, suggesting a critical role of leptin/obR signaling in the pathogenesis of obesity-related neutrophilic airway inflammation in female mice. In in vitro experiments, leptin synergized with LPS/IFN-γ to promote the phosphorylation of the long isoform obR and JNK/STAT3/AKT signaling pathway members to increase M1 macrophage polarization, which was reversed by Allo-Aca. Moreover, leptin/obR-mediated M1 macrophage activity significantly elevated CXCL2 production and neutrophil recruitment by regulating the JNK/STAT3/AKT pathways. In clinical studies, obese patients with asthma had higher serum leptin levels and M1 macrophage polarization levels in induced sputum than non-obese patients with asthma. Serum leptin levels were positively correlated with M1 macrophage polarization levels in patients with asthma. Conclusions Our results demonstrate leptin/obR signaling plays an important role in the pathogenesis of obesity-related neutrophilic airway inflammation in females by promoting M1 macrophage polarization. Graphical abstract
Effects of LEP G2548A and LEPR Q223R Polymorphisms on Serum Lipids and Response to Simvastatin Treatment in Chinese Patients With Primary Hyperlipidemia
Objectives: To investigate whether LEP G2548A and LEPR Q223R polymorphisms influence serum lipid levels and whether the 2 polymorphisms affect the efficacy of simvastatin treatment in Chinese patients with primary hyperlipidemia. Methods: We used an extreme sampling approach by selecting 212 individuals from the top and bottom 15% of adjusted lipid-lowering response residuals to simvastatin (n = 106 in each group of good or bad response) from a total of 734 samples with primary hyperlipidemia. They were treated with simvastatin orally 20 mg/d. Fasting serum lipids were measured at baseline and after 4 and 8 weeks of treatment. Genotyping was carried out using polymerase chain reaction-restriction fragment length polymorphism. Results: More patients in the good response group (27%) had LEPR Q223R than in the bad response group (16%, P = .046). Secondary stratified analyses showed that patients carrying the RR genotype of the LEPR Q223R gene had significantly higher high-density lipoprotein cholesterol levels than those with the QR genotype at baseline (P = .034) among good responders. After 29 consecutive days of treatment with simvastatin, patients carrying the RR genotype had a significantly larger decrease in triglycerides (change: −0.74 ± 0.92, P = .036) and total cholesterol levels (change: −1.77 ± 0.68, P = .023) compared with those carrying QR genotype among bad responders. After Bonferroni correction, the results were not statistically significant. Conclusion: LEPR Q223R polymorphism, but not LEP G2548A, could modulate the efficacy of simvastatin in Chinese patients with primary hyperlipidemia.
Efficacy of Metreleptin in Obese Patients With Type 2 Diabetes: Cellular and Molecular Pathways Underlying Leptin Tolerance
Metreleptin has been efficacious in improving metabolic control in patients with lipodystrophy, but its efficacy has not been tested in obese patients with type 2 diabetes. We studied the role of leptin in regulating the endocrine adaptation to long-term caloric deprivation and weight loss in obese diabetic subjects over 16 weeks in the context of a double-blinded, placebo-controlled, randomized trial. We then performed detailed interventional and mechanistic signaling studies in humans in vivo, ex vivo, and in vitro. In obese patients with diabetes, metreleptin administration for 16 weeks did not alter body weight or circulating inflammatory markers but reduced HbA(1c) marginally (8.01 ± 0.93-7.96 ± 1.12, P = 0.03). Total leptin, leptin-binding protein, and antileptin antibody levels increased, limiting free leptin availability and resulting in circulating free leptin levels of ∼50 ng/mL. Consistent with clinical observations, all metreleptin signaling pathways studied in human adipose tissue and peripheral blood mononuclear cells were saturable at ∼50 ng/mL, with no major differences in timing or magnitude of leptin-activated STAT3 phosphorylation in tissues from male versus female or obese versus lean humans in vivo, ex vivo, or in vitro. We also observed for the first time that endoplasmic reticulum (ER) stress in human primary adipocytes inhibits leptin signaling. In obese patients with diabetes, metreleptin administration did not alter body weight or circulating inflammatory markers but reduced HbA(1c) marginally. ER stress and the saturable nature of leptin signaling pathways play a key role in the development of leptin tolerance in obese patients with diabetes.
The long road to leptin
Leptin is an adipose tissue hormone that functions as an afferent signal in a negative feedback loop that maintains homeostatic control of adipose tissue mass. This endocrine system thus serves a critical evolutionary function by protecting individuals from the risks associated with being too thin (starvation) or too obese (predation and temperature dysregulation). Mutations in leptin or its receptor cause massive obesity in mice and humans, and leptin can effectively treat obesity in leptin-deficient patients. Leptin acts on neurons in the hypothalamus and elsewhere to elicit its effects, and mutations that affect the function of this neural circuit cause Mendelian forms of obesity. Leptin levels fall during starvation and elicit adaptive responses in many other physiologic systems, the net effect of which is to reduce energy expenditure. These effects include cessation of menstruation, insulin resistance, alterations of immune function, and neuroendocrine dysfunction, among others. Some or all of these effects are also seen in patients with constitutively low leptin levels, such as occur in lipodystrophy. Leptin is an approved treatment for generalized lipodystrophy, a condition associated with severe metabolic disease, and has also shown potential for the treatment of other types of diabetes. In addition, leptin restores reproductive capacity and increases bone mineral density in patients with hypothalamic amenorrhea, an infertility syndrome in females. Most obese patients have high endogenous levels of leptin, in some instances as a result of mutations in the neural circuit on which leptin acts, though in most cases, the pathogenesis of leptin resistance is not known. Obese patients with leptin resistance show a variable response to exogenous leptin but may respond to a combination of leptin plus amylin. Overall, the identification of leptin has provided a framework for studying the pathogenesis of obesity in the general population, clarified the nature of the biologic response to starvation, and helped to advance our understanding of the neural mechanisms that control feeding.
Fasting-mimicking diet and hormone therapy induce breast cancer regression
Approximately 75% of all breast cancers express the oestrogen and/or progesterone receptors. Endocrine therapy is usually effective in these hormone-receptor-positive tumours, but primary and acquired resistance limits its long-term benefit 1 , 2 . Here we show that in mouse models of hormone-receptor-positive breast cancer, periodic fasting or a fasting-mimicking diet 3 – 5 enhances the activity of the endocrine therapeutics tamoxifen and fulvestrant by lowering circulating IGF1, insulin and leptin and by inhibiting AKT–mTOR signalling via upregulation of EGR1 and PTEN. When fulvestrant is combined with palbociclib (a cyclin-dependent kinase 4/6 inhibitor), adding periodic cycles of a fasting-mimicking diet promotes long-lasting tumour regression and reverts acquired resistance to drug treatment. Moreover, both fasting and a fasting-mimicking diet prevent tamoxifen-induced endometrial hyperplasia. In patients with hormone-receptor-positive breast cancer receiving oestrogen therapy, cycles of a fasting-mimicking diet cause metabolic changes analogous to those observed in mice, including reduced levels of insulin, leptin and IGF1, with the last two remaining low for extended periods. In mice, these long-lasting effects are associated with long-term anti-cancer activity. These results support further clinical studies of a fasting-mimicking diet as an adjuvant to oestrogen therapy in hormone-receptor-positive breast cancer. In mice, periodic fasting or a fasting-mimicking diet enhances the efficacy of endocrine therapy for breast cancer and delays acquired resistance to it; in patients with breast cancer, a fasting-mimicking diet recreates the metabolic changes observed in mice.
Obesity: Causes and control of excess body fat
Obesity is a major health problem in developed countries and a growing one in the developing world. It increases the risk of diabetes, heart disease, fatty liver and some forms of cancer. A better understanding of the biological basis of obesity should aid its prevention and treatment.
Pretreatment multi-biomarker disease activity score and radiographic progression in early RA: results from the SWEFOT trial
Prediction of radiographic progression (RP) in early rheumatoid arthritis (eRA) would be very useful for optimal choice among available therapies. We evaluated a multi-biomarker disease activity (MBDA) score, based on 12 serum biomarkers as a baseline predictor for 1-year RP in eRA. Baseline disease activity score based on erythrocyte sedimentation rate (DAS28-ESR), disease activity score based on C-reactive protein (DAS28-CRP), CRP, MBDA scores and DAS28-ESR at 3 months were analysed for 235 patients with eRA from the Swedish Farmacotherapy (SWEFOT) clinical trial. RP was defined as an increase in the Van der Heijde-modified Sharp score by more than five points over 1 year. Associations between baseline disease activity measures, the MBDA score, and 1-year RP were evaluated using univariate and multivariate logistic regression, adjusted for potential confounders. Among 235 patients with eRA, 5 had low and 29 moderate MBDA scores at baseline. None of the former and only one of the latter group (3.4%) had RP during 1 year, while the proportion of patients with RP among those with high MBDA score was 20.9% (p=0.021). Among patients with low/moderate CRP, moderate DAS28-CRP or moderate DAS28-ESR at baseline, progression occurred in 14%, 15%, 14% and 15%, respectively. MBDA score was an independent predictor of RP as a continuous (OR=1.05, 95% CI 1.02 to 1.08) and dichotomised variable (high versus low/moderate, OR=3.86, 95% CI 1.04 to 14.26). In patients with eRA, the MBDA score at baseline was a strong independent predictor of 1-year RP. These results suggest that when choosing initial treatment in eRA the MBDA test may be clinically useful to identify a subgroup of patients at low risk of RP. WHO database at the Karolinska Institute: CT20080004; and clinicaltrials.gov: NCT00764725.
Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study
This study explores whether inflammatory biomarkers act as moderators of clinical response to omega-3 ( n -3) fatty acids in subjects with major depressive disorder (MDD). One hundred fifty-five subjects with Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) MDD, a baseline 17-item Hamilton Depression Rating Scale (HAM-D-17) score ⩾15 and baseline biomarker data (interleukin (IL)-1ra, IL-6, high-sensitivity C-reactive protein (hs-CRP), leptin and adiponectin) were randomized between 18 May 2006 and 30 June 2011 to 8 weeks of double-blind treatment with eicosapentaenoic acid (EPA)-enriched n -3 1060 mg day −1 , docosahexaenoic acid (DHA)-enriched n -3 900 mg day −1 or placebo. Outcomes were determined using mixed model repeated measures analysis for ‘high’ and ‘low’ inflammation groups based on individual and combined biomarkers. Results are presented in terms of standardized treatment effect size (ES) for change in HAM-D-17 from baseline to treatment week 8. Although overall treatment group differences were negligible (ES=−0.13 to +0.04), subjects with any ‘high’ inflammation improved more on EPA than placebo (ES=−0.39) or DHA (ES=−0.60) and less on DHA than placebo (ES=+0.21); furthermore, EPA-placebo separation increased with increasing numbers of markers of high inflammation. Subjects randomized to EPA with ‘high’ IL-1ra or hs-CRP or low adiponectin (‘high’ inflammation) had medium ES decreases in HAM-D-17 scores vs subjects ‘low’ on these biomarkers. Subjects with ‘high’ hs-CRP, IL-6 or leptin were less placebo-responsive than subjects with low levels of these biomarkers (medium to large ES differences). Employing multiple markers of inflammation facilitated identification of a more homogeneous cohort of subjects with MDD responding to EPA vs placebo in our cohort. Studies are needed to replicate and extend this proof-of-concept work.
Biologically Inactive Leptin and Early-Onset Extreme Obesity
Mutations in the gene encoding leptin ( LEP ) typically lead to an absence of circulating leptin and to extreme obesity. We describe a 2-year-old boy with early-onset extreme obesity due to a novel homozygous transversion (c.298G→T) in LEP , leading to a change from aspartic acid to tyrosine at amino acid position 100 (p.D100Y) and high immunoreactive levels of leptin. Overexpression studies confirmed that the mutant protein is secreted but neither binds to nor activates the leptin receptor. The mutant protein failed to reduce food intake and body weight in leptin-deficient ob/ob mice. Treatment of the patient with recombinant human leptin (metreleptin) rapidly normalized eating behavior and resulted in weight loss. This report describes a boy with early-onset extreme obesity due to a novel mutation in LEP, which led to high levels of an inactive leptin protein. Treatment with metreleptin rapidly normalized eating behavior, with resultant weight loss. Congenital leptin deficiency is a very rare cause of early-onset extreme obesity. 1 It was first described in two extremely obese cousins from a consanguineous Pakistani family. 2 The conditions of both children were characterized by the absence of leptin in the circulation as a result of a homozygous frameshift mutation in LEP . Seven additional mutations have since been reported. 3 – 8 The type I cytokine leptin is mainly produced by adipocytes to signal the energy state of the body and exerts its function as a satiety signal in the hypothalamus. 9 Clinical hallmarks of congenital leptin deficiency include early-onset extreme obesity, marked . . .