Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
15,297 result(s) for "Recombinant Fusion Proteins - metabolism"
Sort by:
A genetically encoded probe for imaging nascent and mature HA-tagged proteins in vivo
To expand the toolbox of imaging in living cells, we have engineered a single-chain variable fragment binding the linear HA epitope with high affinity and specificity in vivo. The resulting probe, called the HA frankenbody, can light up in multiple colors HA-tagged nuclear, cytoplasmic, membrane, and mitochondrial proteins in diverse cell types. The HA frankenbody also enables state-of-the-art single-molecule experiments in living cells, which we demonstrate by tracking single HA-tagged histones in U2OS cells and single mRNA translation dynamics in both U2OS cells and neurons. Together with the SunTag, we also track two mRNA species simultaneously to demonstrate comparative single-molecule studies of translation can now be done with genetically encoded tools alone. Finally, we use the HA frankenbody to precisely quantify the expression of HA-tagged proteins in developing zebrafish embryos. The versatility of the HA frankenbody makes it a powerful tool for imaging protein dynamics in vivo. Expression of genetically encoded antibodies for cell labelling is often limited by folding issues. Here, the authors engineer an anti-HA scFv antibody that works in the cellular environment and use it to track mRNA translation dynamics in living cells and to label proteins in live zebrafish embryos.
Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains
In a subset of poorly differentiated and highly aggressive carcinoma, a chromosomal translocation, t(15;19)(q13;p13), results in an in‐frame fusion of the double bromodomain protein, BRD4, with a testis‐specific protein of unknown function, NUT (nuclear protein in testis). In this study, we show that, after binding to acetylated chromatin through BRD4 bromodomains, the NUT moiety of the fusion protein strongly interacts with and recruits p300, stimulates its catalytic activity, initiating cycles of BRD4–NUT/p300 recruitment and creating transcriptionally inactive hyperacetylated chromatin domains. Using a patient‐derived cell line, we show that p300 sequestration into the BRD4–NUT foci is the principal oncogenic mechanism leading to p53 inactivation. Knockdown of BRD4–NUT released p300 and restored p53‐dependent regulatory mechanisms leading to cell differentiation and apoptosis. This study demonstrates how the off‐context activity of a testis‐specific factor could markedly alter vital cellular functions and significantly contribute to malignant cell transformation. The BRD4–NUT fusion protein, associated with an aggressive form of midline carcinoma, induces a feedforward loop involving the massive recruitment of p300 to acetylated chromatin foci, in turn leading to the sequestration and inactivation of p53.
High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae
Eukaryotic membrane proteins are often difficult to produce in large quantities, which is a significant obstacle for further structural and biochemical investigation. Based on the analysis of 43 eukaryotic membrane proteins, we present a cost-effective high-throughput approach for rapidly screening membrane proteins that can be overproduced to levels of >1 mg per liter in Saccharomyces cerevisiae. We find that 70% of the well expressed membrane proteins tested in this system are stable, targeted to the correct organelle, and monodisperse in either Fos-choline 12 (FC-12) or n-dodecyl-β-D-maltoside. We illustrate the advantage of such an approach, with the purification of monodisperse human and yeast nucleotide-sugar transporters to unprecedented levels. We estimate that our approach should be able to provide milligram quantities for at least one-quarter of all membrane proteins from both yeast and higher eukaryotic organisms.
Recruitment of RED-SMU1 Complex by Influenza A Virus RNA Polymerase to Control Viral mRNA Splicing
Influenza A viruses are major pathogens in humans and in animals, whose genome consists of eight single-stranded RNA segments of negative polarity. Viral mRNAs are synthesized by the viral RNA-dependent RNA polymerase in the nucleus of infected cells, in close association with the cellular transcriptional machinery. Two proteins essential for viral multiplication, the exportin NS2/NEP and the ion channel protein M2, are produced by splicing of the NS1 and M1 mRNAs, respectively. Here we identify two human spliceosomal factors, RED and SMU1, that control the expression of NS2/NEP and are required for efficient viral multiplication. We provide several lines of evidence that in infected cells, the hetero-trimeric viral polymerase recruits a complex formed by RED and SMU1 through interaction with its PB2 and PB1 subunits. We demonstrate that the splicing of the NS1 viral mRNA is specifically affected in cells depleted of RED or SMU1, leading to a decreased production of the spliced mRNA species NS2, and to a reduced NS2/NS1 protein ratio. In agreement with the exportin function of NS2, these defects impair the transport of newly synthesized viral ribonucleoproteins from the nucleus to the cytoplasm, and strongly reduce the production of infectious influenza virions. Overall, our results unravel a new mechanism of viral subversion of the cellular splicing machinery, by establishing that the human splicing factors RED and SMU1 act jointly as key regulators of influenza virus gene expression. In addition, our data point to a central role of the viral RNA polymerase in coupling transcription and alternative splicing of the viral mRNAs.
Evolution of a chimeric aspartate kinase for L-lysine production using a synthetic RNA device
Aspartate kinase (AK) is a key enzyme involved in catalyzing the first step of the aspartate-derived amino acid biosynthesis, including L-lysine and L-threonine, which is regulated by the end-metabolites through feedback inhibition. In order to accumulate the end-metabolites in the host, the feedback inhibition of AK has to be released. In this study, a chimeric aspartate kinase, which is composed of the N-terminal catalytic region from Bacillus subtilis AKII and the C-terminal region from Thermus thermophilus, was evolved through random mutagenesis and then screened using a high-throughput synthetic RNA device which comprises of an L-lysine-sensing riboswitch and a selection module. Of three evolved aspartate kinases, the best mutant BT3 showed 160 % increased in vitro activity compared to the wild-type enzyme. Recombinant Escherichia coli harboring BT3 produced 674 mg/L L-lysine in batch cultivation, similar to that produced by the strain harboring the typical commercial widely used feedback resistant aspartate kinase AKC ᶠᵇʳ from E. coli. The results suggested that this strategy can be extended for screening of other key enzymes involved in lysine biosynthesis pathways.
Design and Evolution of New Catalytic Activity with an Existing Protein Scaffold
The design of enzymes with new functions and properties has long been a goal in protein engineering. Here, we report a strategy to change the catalytic activity of an existing protein scaffold. This was achieved by simultaneous incorporation and adjustment of functional elements through insertion, deletion, and substitution of several active site loops, followed by point mutations to fine-tune the activity. Using this approach, we were able to introduce$\\beta-lactamase$activity into the$\\alpha \\beta/\\beta\\alpha$metallohydrolase scaffold of glyoxalase II. The resulting enzyme, evMBL8 (evolved metallo$\\beta-lactamase$8), completely lost its original activity and, instead, catalyzed the hydrolysis of cefotaxime with a ($k_{cat}/K_{m})^{app}$of$1.8 \\times 10^2 (mole/liter)^{-1} second^{-1}$, thus increasing resistance to Escherichia coli growth on cefotaxime by a factor of about 100.
Therapeutic antitumor efficacy of monoclonal antibody against Claudin-4 for pancreatic and ovarian cancers
Claudin‐4 (CLDN4) is a tetraspanin transmembrane protein of tight junction structure and is highly expressed in pancreatic and ovarian cancers. In this study, we aimed to generate an anti‐Claudin‐4 monoclonal antibody (mAb) and evaluate its antitumor efficacy in vitro and in vivo. To isolate specific mAb, we generated CLDN3, 4, 5, 6, and 9, expressing Chinese hamster ovary (CHO) cells, and then used them as positive and negative targets through cell‐based screening. As a result, we succeeded in isolating KM3900 (IgG2a), which specifically bound to CLDN4, from BXSB mice immunized with pancreatic cancer cells. Immunoprecipitation and flow cytometry analysis revealed that KM3900 recognized the conformational structure and bound to extracellular loop 2 of CLDN4. Furthermore, binding of KM3900 was detected on CLDN4‐expressing pancreatic and ovarian cancer cells, but not on negative cells. Next, we made the mouse–human chimeric IgG1 (KM3934) and evaluated its antitumor efficacy. KM3934 induced dose‐dependent antibody‐dependent cellular cytotoxicity and complement‐dependent cytotoxicity in vitro, and significantly inhibited tumor growth in MCAS or CFPAC‐1 xenograft SCID mice in vivo (P < 0.05). These results suggest that mAb therapy against CLDN4 is promising for pancreatic and ovarian cancers. (Cancer Sci 2009; 100: 1623–1630)
Immunopotentiation of Trivalent Influenza Vaccine When Given with VAX102, a Recombinant Influenza M2e Vaccine Fused to the TLR5 Ligand Flagellin
Currently controversy exists about the immunogenicity of seasonal trivalent influenza vaccine in certain populations, especially the elderly. STF2.4×M2e (VAX102) is a recombinant fusion protein that links four copies of the ectodomain of influenza virus matrix protein 2 (M2e) antigen to Salmonella typhimurium flagellin, a TLR5 ligand. The objectives of this study were to assess the feasibility of giving VAX102 and TIV in combination in an effort to achieve greater immunogenicity and to provide cross-protection. Eighty healthy subjects, 18-49 years old, were enrolled in May and June 2009 in a double-blind, randomized, controlled trial at two clinical sites. Subjects were randomized to receive either TIV + VAX102 or TIV + placebo. Both arms tolerated the vaccines. Pain at the injection site was more severe with TIV + VAX102. Two weeks after immunization the HAI responses to the H1 and H3 antigens of TIV were higher in those that received TIV + VAX102 than in TIV + placebo (309 vs 200 and 269 vs 185, respectively), although statistically non-significant. There was no difference in the HAI of the B antigen. In the TIV + VAX102 arm, the geometric mean M2e antibody concentration was 0.5 µg/ml and 73% seroconverted. The combination of TIV + VAX102 has the potential to increase the immune response to the influenza A components of TIV and to provide M2e immunity which may protect against influenza A strains not contained in seasonal TIV. ClinicalTrials.gov NCT00921973.
Phage Display of the Serpin Alpha-1 Proteinase Inhibitor Randomized at Consecutive Residues in the Reactive Centre Loop and Biopanned with or without Thrombin
In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API) in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2-P1) yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352-356 (P7-P3) was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7-P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1) as a serpin amenable to phage display and suggest the utility of this approach for the selection of \"designer serpins\" with novel reactivity and/or specificity.
Structure, lipid scrambling activity and role in autophagosome formation of ATG9A
De novo formation of the double-membrane compartment autophagosome is seeded by small vesicles carrying membrane protein autophagy-related 9 (ATG9), the function of which remains unknown. Here we find that ATG9A scrambles phospholipids of membranes in vitro. Cryo-EM structures of human ATG9A reveal a trimer with a solvated central pore, which is connected laterally to the cytosol through the cavity within each protomer. Similarities to ABC exporters suggest that ATG9A could be a transporter that uses the central pore to function. Moreover, molecular dynamics simulation suggests that the central pore opens laterally to accommodate lipid headgroups, thereby enabling lipids to flip. Mutations in the pore reduce scrambling activity and yield markedly smaller autophagosomes, indicating that lipid scrambling by ATG9A is essential for membrane expansion. We propose ATG9A acts as a membrane-embedded funnel to facilitate lipid flipping and to redistribute lipids added to the outer leaflet of ATG9 vesicles, thereby enabling growth into autophagosomes.Cryo-EM analyses together with liposome and cellular assays reveal that human ATG9A forms a trimer that mediates phospholipid flipping and promotes autophagosome membrane expansion.