Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
79 result(s) for "Rectangular jets"
Sort by:
Plume Deflection Mechanism in Supersonic Rectangular Jet with Aft-Deck
This study investigates jet plume deflection in underexpanded supersonic rectangular nozzles with aft-decks. To determine the underlying mechanism, 117 two-dimensional, Reynolds-averaged Navier–Stokes simulations were performed across a nozzle pressure ratio (NPR) range of 1.9≤NPR≤5.0 and aft-deck length (Laft/Dh) range of 1.36≤Laft/Dh≤3.37. For each simulation, the first shock reflection S1, the wall-pressure field, the vertical force Fy, and the presence of any separation bubble were recorded to characterize the relationships among NPR, Laft, and θ. Accordingly, a cause-and-effect path was delineated as (NPR,Laft)→S1→Fy→θ. A weighted regression captured 96% of the variance in the deflection angle and revealed that shifts in shock position set the wall-pressure imbalance. The imbalance fixes the vertical force and the force ultimately rotates the jet plume. Downward deflection arises when the shock reflects near the deck edge, whereas upstream reflection initiates a shock–boundary-layer interaction that forms a separation bubble and drives the jet plume upward. Between these extremes, a narrow operating band allows either outcome, explaining the divergent trends reported in prior work. The quantitative model assumes steady, two-dimensional flow and the regression prioritises illuminating the underlying physics over exact prediction of θ. Nevertheless, under these assumptions, the analysis establishes a physics-based framework that reconciles earlier observations and offers a basis for understanding how nozzle pressure ratio and aft-deck length govern jet plume deflection.
Effect of Plasma Actuator on Velocity and Temperature Profiles of High Aspect Ratio Rectangular Jet
The turbulence jet centerline velocity and temperature decay intensely along the centerline flow direction. Thus, improving it could benefit engineering applications, such as air conditioners. However, active flow control techniques with high-aspect-ratio jets, especially for controlling the temperature, have not been widely investigated. This paper presents the velocity and temperature performance of a high-aspect-ratio rectangular jet controlled by two dielectric barrier discharge plasma actuators located on the longer sides of the nozzle and controlled by high-voltage and high-frequency pulse-width modulation sinusoidal waves. The scanning method was used to cover 362 cases as combinations of working parameters (modular frequency vs. duty vs. phase difference) for the velocity and temperature performances of the jets. Results show that plasma actuators can control both velocity and temperature distribution with minor input power compared with the rectangular jet’s kinetic energy and heat flux. The velocity increased up to 4% and decreased to 11%, measured at the interest position where x/h = 70 on the centerline. There were a 5% increase and a 4% decrease compared to the temperature-based case. Distinctive velocity and temperature distributions were observed under noteworthy cases, indicating the potential of the actuator to create various flow features without installing new hardware on the flow.
Decay of supersonic rectangular jet issuing from a nozzle with diagonal expansion ramps
This paper addresses the effect of expansion ramps on the decay characteristics of a controlled supersonic rectangular jet. A Mach 1.8 rectangular jet issuing from a converging-diverging nozzle of aspect ratio 2 and Reynolds number 1.861?105 is considered as the base model for the study. Two separate nozzle models with expansion ramps placed at the diagonal ends on major and on the minor internal surface are considered for the present study. The diagonal placements of ramps induce additional vortices near the nozzle exit apart from the corner vortices emanating from the rectangular corners. Experimental and computational investigations at different expansion levels are carried to prove the enhanced mixing rate due to the induced vortex. The ramps on the minor side caused maximum supersonic core length reduction of 44% at an inlet total pressure of 4 bar and a minimum of 27% at an inlet total pressure of 8 bar. The maximum and minimum core length reductions caused by the ramps placed on the major side are 22% and 11% at inlet total pressures 6 and 8 bar respectively. Both experimental and numerical studies show that shock waves are rendered weak by the minor side placement of ramps at all expansion levels. nema
Effect of a Control Mechanism on the Interaction between a Rectangular Jet and a Slotted Plate: Experimental Study of the Aeroacoustic Field
The aeroacoustic field of a rectangular subsonic jet impinging on a slotted plate was investigated experimentally using microphones and stereoscopic particle image velocimetry (S-PIV). The study was carried out with a Reynolds number of 6700 and an impact distance of 4 cm. The current configuration represents a benchmark standpoint, featuring high levels of generated noise. A control mechanism consisting of a thin rod was introduced downstream from the jet exit to suppress the self-sustained tones. A total of 1085 positions of the rod between the jet exit and impinging plate were tested to identify positions of optimal noise reduction. Two zones were distinguished in terms of control efficacy: a zone where the sound pressure level (SPL) dropped by up to 19 dB and another zone where the SPL increased by up to 14 dB. The velocity fields show that the presence of the rod divides the jet into two lateral secondary jets on both sides of the main jet axis. The outer part of the secondary jets expanded radially with less interaction with the plate compared to the case without the control. This behavior affected the deformation of vortices against the slot. Proper orthogonal decomposition was applied to the velocity field for a better understanding of the turbulence dynamics with and without the control rod.
Noise mitigation in rectangular jets through plasma actuator-based shear layer control
A computational analysis is performed to study the three-dimensional response of rectangular shear layers to plasma actuator-based control, in the context of sound mitigation of supersonic non-axisymmetric jets. A Mach $1.5$ rectangular jet with an aspect ratio $2:1$ is controlled using experimentally informed actuation patterns, referred to as M0, M1, M2, M3, M${\\rm \\pi}$ and M+/$-$1. While the first five progressively increase the phase difference between successive actuators thus enhancing three-dimensionality of the shear layer structures, the latter corresponds to the flapping mode of the jet. A preliminary linear analysis identifies that the frequency, $St\\sim 1$, has a relatively high overall amplification within the baseline shear layer, and is hence utilized for control in the subsequent nonlinear simulations. Each actuation reveals unique near-field vortical and acoustic responses that have a profound impact on far-field noise levels. The M0 actuation induces circumferentially interconnected strong streamwise vortices, while M1 actuation enhances the circumferential variability in the coherent structures. The M2 actuation encompasses both these effects, and along with a very low tonal impact of forcing, produces the most desirable far-field noise mitigation (${\\sim }2.6\\,{\\rm dB}$), contributed by a broadband reduction around the column-mode peak of the baseline jet. Beyond M2 actuation, effectiveness of control saturates, particularly along the direction of peak noise radiation. Through a near-field analysis of the acoustic component, the efficacy of M2 actuation is attributed to the attenuation of the radiative efficiency of the jet, including reduced energy in the supersonic phase speeds, and redistribution of energy into the higher helical modes. Further, it curtails the nonlinear difference interactions in the plume that energize column-mode frequencies, which often appear as strong intermittent sound-producing events. While the shear layer turbulent kinetic energy decreases with actuation, the controlled jets show minimal variations in mean flow properties, particularly under M2 actuation, suggesting this to be a promising small-perturbation-based noise control strategy.
A closure mechanism for screech coupling in rectangular twin jets
The twin-jet configuration allows two different scenarios to close the screech feedback. For each jet, there is one loop involving disturbances which originate in that jet and arrive at its own receptivity point in phase (self-excitation). The other loop is associated with free-stream acoustic waves that radiate from the other jet, reinforcing the self-excited screech (cross-excitation). In this work, the role of the free-stream acoustic mode and the guided-jet mode as a closure mechanism for twin rectangular jet screech is explored by identifying eligible points of return for each path, where upstream waves propagating from such a point arrive at the receptivity location with an appropriate phase relation. Screech tones generated by these jets are found to be intermittent with an out-of-phase coupling as a dominant coupling mode. The instantaneous phase difference between the twin jets computed by the Hilbert transform suggests that a competition between out-of-phase and in-phase coupling is responsible for the intermittency. To model wave components of the screech feedback while ensuring perfect phase locking, an ensemble average of leading spectral proper orthogonal decomposition modes is obtained from several segments of large-eddy simulation data that correspond to periods of invariant phase difference between the two jets. Each mode is then extracted by retaining relevant wavenumber components produced via a streamwise Fourier transform. Spatial cross-correlation analysis of the resulting modes shows that most of the identified points of return for the cross-excitation are synchronised with the guided jet mode self-excitation, supporting that it is preferred in closing rectangular twin-jet screech coupling.
Effect of plasma actuator-based control on flow-field and acoustics of supersonic rectangular jets
We perform a computational study on the effects of localized arc filament plasma actuator based control on the flow field and acoustics of a supersonic 2:1 aspect ratio rectangular jet. Post validation of the baseline jet, effects of control in the context of noise reduction are studied at experimentally guided forcing parameters, including frequencies $St=0.3, 1.0$ and $St=2.0$ with duty cycles of $20\\,\\%$ and $50\\,\\%$. In general, high-frequency forcing reduces noise in the downstream direction, with the actuator signature appearing mostly in the sideline direction. Here $St=1$, ${\\rm DC}=50\\,\\%$ yields an optimum balance between peak noise reduction (of ${\\sim }1.5$ dB) and actuator tones, with control being most effective on the major axis plane that bisects the shorter edges of the nozzle. Shear layer response to the most effective forcing includes generation of successive arrays of mutually interacting staggered lambda vortices, which eventually energize streamwise vortical elements. Causal mechanisms of noise mitigation are further elucidated as follows. First, the control reduces the energy within the supersonic phase speed regime of peak radiating frequencies by redistributing a part of it into a high-frequency band. Second, it enhances azimuthal percolation of energy into the first and second helical modes at frequencies where noise reduction is seen, thus weakening the radiatively efficient axisymmetric mode. Finally, sound-producing intermittent events in the jet are significantly reduced, thereby minimizing the high-intensity acoustic emissions. This small-perturbation-based control strategy results in only minor variations in the mean flow properties. However, reduced production and enhanced convection attenuate turbulent kinetic energy within the spreading shear layer in the controlled jet.
A robust physics-based method to filter coherent wavepackets from high-speed schlieren images
A complete understanding of jet dynamics is greatly enabled by the accurate separation of acoustically efficient wavepackets from their higher-energy convecting turbulent counterparts. Momentum potential theory (MPT) has proven highly effective in filtering the desired acoustic component irrespective of operating conditions or nozzle complexity. However, MPT is a data-intensive method predicated on the knowledge of fluctuation quantities in the entire flow field; as such, it has to date been applied only to numerically obtained data. This work develops an approach to extend its application to extract coherent wavepacket data from high-speed schlieren images. Pixel intensities from the schlieren image are mapped to a scaled surrogate for the line-of-sight integrated density gradient. The linear relation between the irrotational scalar MPT potential and time derivatives of density fluctuations is then exploited to perform the filtering. The effectiveness of the procedure is demonstrated using experimental as well as numerical schlieren images representing a wide range of imperfectly expanded free and impinging jet configurations. When combined with spectral proper orthogonal decomposition (SPOD), the method yields modes that accurately capture (i) the Mach wave radiation from a military-style jet, (ii) the mode shapes of the feedback tones in an impinging jet and (iii) the screech signature in twin rectangular jets, without recourse to user adjusted parameters. This technique can greatly enhance the use of high-speed diagnostics for real-time monitoring of the near-field acoustic content for potential feedback control. Additionally, the general nature of the approach allows a straightforward application to other flows, such as cavity and airfoil flow-acoustic interactions.