Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
760 result(s) for "Red fox"
Sort by:
Red foxes
Did you know that red fox kits have blue eyes at first? They turn gold over time. Find out more in Red Foxes, a Little Backyard Animals book.
Widespread Exposure to Mosquitoborne California Serogroup Viruses in Caribou, Arctic Fox, Red Fox, and Polar Bears, Canada
Northern Canada is warming at 3 times the global rate. Thus, changing diversity and distribution of vectors and pathogens is an increasing health concern. California serogroup (CSG) viruses are mosquitoborne arboviruses; wildlife reservoirs in northern ecosystems have not been identified. We detected CSG virus antibodies in 63% (95% CI 58%-67%) of caribou (n = 517), 4% (95% CI 2%-7%) of Arctic foxes (n = 297), 12% (95% CI 6%-21%) of red foxes (n = 77), and 28% (95% CI 24%-33%) of polar bears (n = 377). Sex, age, and summer temperatures were positively associated with polar bear exposure; location, year, and ecotype were associated with caribou exposure. Exposure was highest in boreal caribou and increased from baseline in polar bears after warmer summers. CSG virus exposure of wildlife is linked to climate change in northern Canada and sustained surveillance could be used to measure human health risks.
Vulpes, the red fox
Follows the life of a red fox from his birth in a Maryland den through his growth to maturity to his eventual encounter with a determined hunter.
two‐species occupancy model accommodating simultaneous spatial and interspecific dependence
Occupancy models are popular for estimating the probability a site is occupied by a species of interest when detection is imperfect. Occupancy models have been extended to account for interacting species and spatial dependence but cannot presently allow both factors to act simultaneously. We propose a two‐species occupancy model that accommodates both interspecific and spatial dependence. We use a point‐referenced multivariate hierarchical spatial model to account for both spatial and interspecific dependence. We model spatial random effects with predictive process models and use probit regression to improve efficiency of posterior sampling. We model occupancy probabilities of red fox (Vulpes vulpes) and coyote (Canis latrans) with camera trap data collected from six mid‐Atlantic states in the eastern United States. We fit four models comprising a fully factorial combination of spatial and interspecific dependence to two‐thirds of camera trapping sites and validated models with the remaining data. Red fox and coyotes each exhibited spatial dependence at distances >0.8 and 0.4 km, respectively, and exhibited geographic variation in interspecific dependence. Consequently, predictions from the model assuming simultaneous spatial and interspecific dependence best matched test data observations. This application highlights the utility of simultaneously accounting for spatial and interspecific dependence.
The endangered Arctic fox in Norway-the failure and success of captive breeding and reintroduction
The Arctic fox (Vulpes lagopus L.) is listed as extinct in Finland, endangered in Sweden and critically endangered in Norway. Around 2000 there were only 40-60 adult individuals left, prompting the implementation of conservation actions, including a captive breeding programme founded from wild-caught pups. The initial breeding trials failed, probably because of stress among captive animals, and the programme was radically changed in 2005. Eight large enclosures within the species' historical natural habitat were established, which had the positive effect of all pairs breeding in 2007. As of 2015, 385 pups (yearly average 37) were produced. In this ongoing programme, pups are released the winter (January-February) following their birth and have had an average first-year survival of 0.44. The release sites are prepared with artificial dens and a network of supplementary food dispensers, designed to work exclusively for the Arctic fox. After just four to seven years of releases, populations have been effectively re-established in three mountain areas where the species had been locally extinct. One of the newly re-established populations has become the largest population in Norway. Several other populations, including Swedish ones, have benefited considerably from successful immigration of released foxes. The number of wild-born pups that are descendants of released foxes has likely exceeded 600, and in 2014 50% of all free-living breeding pairs in mainland Norway included released foxes or their descendants. The Norwegian Arctic fox captive breeding programme has proven to be an important conservation action for the recovery of the Scandinavian Arctic fox population.
Fate of the other redcoat: remnants of colonial British foxes in the eastern United States
Red foxes were absent or rare in the southeastern United States until the late 1800s. Their origins potentially include natural population increase/expansion, translocations from Europe, and, eventually, 20th century fur farming. Previous studies have found no European haplotypes in North America, but few samples were sourced from the Atlantic coastal plain, closer to the source of putative introductions. Through analysis of mitochondrial DNA in 584 red foxes from this region, we identified indigenous haplotypes in ≥ 35% of foxes, 1 of 2 European haplotypes in 17% of foxes and fur farm haplotypes in ≥ 13% of foxes; another 35% of foxes had haplotypes potentially indigenous or native. In contrast, only 3 of 135 (2%) male foxes carried a single European Y chromosome haplotype. Most European and fur farm haplotypes were found near the densely human-populated coastal plain and Hudson River lowlands; most red foxes of the Appalachians and Piedmont had native eastern haplotypes. Our findings suggest that the more remote, upland populations primarily reflect indigenous red fox matrilines, whereas urban-associated populations in and around the mid-Atlantic coastal plain and Hudson lowlands reflect an admixture of native and nonnative maternal sources. Autosomal markers are needed to further elucidate the extent of European and fur farm introgression in the Appalachians and further west.
Mycobacterium bovis Infection in Red Foxes in Four Animal Tuberculosis Endemic Areas in France
In France, animal tuberculosis (TB) due to Mycobacterium bovis (M. bovis) affects a multi-host community that include cattle and wildlife species such as wild boars (Sus scrofa), badgers (Meles meles), or wild deer (Cervus elaphus, Capreolus capreolus). The involvement of foxes in the epidemiology of TB is fairly described in countries facing multispecies concerns. After the discovery of grouped cases of TB in foxes in a French TB endemic region, a study was implemented in the core of four TB endemic areas in Dordogne, Charente, Landes (departments of Nouvelle-Aquitaine region), and Côte-d’Or (Burgundy-Franche-Comté region). No infected fox was found in Côte-d’Or (n = 146), where in parallel TB in cattle and other wild species became sparse in the last years. In contrast, in Dordogne, Charente, and Landes, 13 (n = 184), 9 (n = 98) and 7 (n = 140) foxes were found infected by M. bovis, respectively, corresponding to 7.1% (CI95% 3.8–11.8%), 9.2% (4.3–16.7%) and 5.0% (CI95% 2.0–10.0%) prevalence rates, respectively. These infection rates are comparable with those observed in badgers and wild boar in these same three areas (ranging from 9 to 13.2% and 4.3 to 17.9%, respectively), where the number of cattle outbreaks has increased in the last 10-15 years. In each area, the genotypes of foxes’ M. bovis isolates were the same as those in local cattle and other wildlife species. None of the infected foxes presented TB-like gross lesions. M. bovis was found in the mesenteric lymph nodes of 28 foxes (68%). For the 12 foxes where retropharyngeal and respiratory lymph nodes were analyzed separately, M. bovis was present in the respiratory lymph nodes of eight individuals. With regard to excretion, appropriate samples were available for 12 infected foxes from Dordogne. M. bovis DNA was detected in the feces of five of these animals, four of which were infected in the mesenteric lymph nodes. Combined with the knowledge on the biology and ecology of foxes, the results of this study suggest that in areas where infection in cattle is still active in France, foxes might play a role of spillover host in the epidemiology of M. bovis.
Genetic integrity, diversity, and population structure of the Cascade red fox
The Cascade red fox (CRF) occurred historically throughout subalpine and alpine habitats in the Cascade Range of Washington and southernmost British Columbia, but now appears to be extremely rare. Causes for its apparent decline are unknown, as is the current distribution and connectivity of its populations. Additionally, the introduction of nonnative (fur-farm) red foxes to surrounding lowland areas during the past century raises concerns about their expansion to higher elevations and potential hybridization with the CRF. We conducted noninvasive genetic sampling and analyses of CRFs in a 5575 km2 region in the southern portion of its range, which is thought to contain a significant proportion of the current population. We obtained 154 mitochondrial DNA sequences and microsatellite genotypes for 51 individuals to determine trends in genetic diversity, assess evidence for nonnative introgression, and describe population structure. Although heterozygosity (He = 0.60, SE = 0.03) was only slightly lower than an estimate obtained from samples collected during the 1980s (He = 0.64, SE = 0.05), genetic effective size of the current population based on a one-sample estimate was very small (Ne = 16.0, 95% CI 13.3–19.4), suggesting a loss of genetic diversity and the potential for inbreeding depression in future decades. Genetic connectivity was high and we found no evidence for hybridization with nonnative lowland red foxes. Thus, although a small effective population size indicates the possibility of inbreeding depression and loss of evolutionary potential, high connectivity and genetic integrity could mitigate this to some extent, indicating that the population could respond to conservation efforts. Ultimately, successful conservation of this species depends on a better understanding of the factors that originally contributed to its decline and that currently limit its growth.
Detection of Babesia annae DNA in lung exudate samples from Red foxes (Vulpes vulpes) in Great Britain
Background This study aimed to determine the prevalence of Babesia species DNA in lung exudate samples collected from red foxes ( Vulpes vulpes ) from across Great Britain. Babesia are small piroplasmid parasites which are mainly transmitted through the bite of infected ticks of the family Ixodidae. Babesia can cause potentially fatal disease in a wide-range of mammalian species including humans, dogs and cattle, making them of significant economic importance to both the medical and veterinary fields. Methods DNA was extracted from lung exudate samples of 316 foxes. A semi-nested PCR was used to initially screen samples, using universal Babesia - Theileria primers which target the 18S rRNA gene. A selection of positive PCR amplicons were purified and sequenced. Subsequently specific primers were designed to detect Babesia annae and used to screen all 316 DNA samples. Randomly selected positive samples were purified and sequenced (GenBank accession KT580786). Clones spanning a 1717 bp region of the 18S rRNA gene were generated from 2 positive samples, the resultant consensus sequence was submitted to GenBank (KT580785). Sequence KT580785 was used in the phylogenetic analysis Results Babesia annae DNA was detected in the fox samples, in total 46/316 (14.6 %) of samples tested positive for the presence of Babesia annae DNA. The central region of England had the highest prevalence at 36.7 %, while no positive samples were found from Wales, though only 12 samples were tested from this region. Male foxes were found to have a higher prevalence of Babesia annae DNA than females in all regions of Britain. Phylogenetic and sequence analysis of the GenBank submissions (Accession numbers KT580785 and KT580786) showed 100 % identity to Babesia sp.-‘Spanish Dog’ (AY534602, EU583387 and AF188001). Conclusions This is the first time that Babesia annae DNA has been reported in red foxes in Great Britain with positive samples being found across England and Scotland indicating that this parasite is well established within the red fox population of Britain. Phylogenetic analysis demonstrated that though B. annae is closely related to B. microti it is a distinct species.
Evaluation of Camera Trapping for Estimating Red Fox Abundance
The nature reserve Serra da Malcata, Portugal, was recently considered a site for Iberian lynx (Lynx pardinus) reintroduction. Because of potential disease risk posed by red foxes (Vulpes vulpes) in the area, a reliable estimate of fox abundance was critical for a dependable reintroduction program. We adapted camera-trapping techniques for estimating red fox abundance in the reserve. From July 2005 to August 2007, we conducted 7 camera-trapping sessions, allowing for individual identification of foxes by physical characteristics. We estimated abundance using the heterogeneity (Mh) model of the software program CAPTURE. Estimated density ranged from 0.91 ± 0.12 foxes/km2 to 0.74 ± 0.02 foxes/km2. By estimating red fox density, it is possible to define the number of foxes that must be sampled to assess the presence of potential fox-transmitted diseases that may affect lynx reintroduction.