Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
53,186 result(s) for "Reference material"
Sort by:
Artifacts From Medieval Europe
\"Using artifacts as primary sources, this book enables students to comprehensively assess and analyze historic evidence in the context of the medieval period\"-- Provided by publisher.
From urban dust and marine sediment to Ginkgo biloba and human serum—a top ten list of Standard Reference Materials (SRMs)
During the past 40 years, the National Institute of Standards and Technology (NIST) has developed over 180 natural matrix Standard Reference Materials® (SRMs) for the determination of trace organic constituents in environmental, clinical, food, and dietary supplement matrices. A list of the Top Ten SRMs intended for organic analysis was identified based on selection criteria including analytical challenge to assign certified values, challenges in material preparation, novel matrices, longevity, widespread use, and unique design concept or intended use. The environmental matrix SRMs include air particulate matter, marine sediment, mussel tissue, and human serum with the focus on contaminants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorinated pesticides, and polybrominated diphenyl ethers (PBDEs). Human serum and plasma SRMs for clinical diagnostic markers including vitamin D metabolites represent clinical analysis, whereas infant formula, multivitamin/multielement tablets, and Ginkgo biloba constitute the food and dietary supplement matrices on the list. Each of the SRMs on the Top Ten list is discussed relative to the selection criteria and significance of the material, and several overall lessons learned are summarized.
Collaborative study for certification of trace elements in uranium ore concentrate CRMs UCLO-1, UCHI-1, and UPER-1
Trace impurity patterns are important nuclear forensic signatures in uranium ore concentrates (UOCs) and Certified Reference Materials (CRMs) are used to validate the analysis methods employed by end users. Herein, we discuss the certification campaign for three new UOC CRMs from the National Research Council Canada: UCLO-1 (https://doi.org/10.4224/crm.2020.uclo-1), UCHI-1 (https://doi.org/10.4224/crm.2020.uchi-1), and UPER-1 (https://doi.org/10.4224/crm.2020.uper-1). This study involved 15 laboratories from 10 countries, using sector-field and (triple) quadrupole inductively-coupled plasma mass spectrometry to analyze 64 trace element impurities. We discuss the importance of the acids used for sample digestion, difficulties analyzing in a high uranium matrix, and data combination and uncertainty evaluation for this large dataset.
The Effect of Calibration with Different Matrix Reference Materials on the Accuracy of Oxygen Determination by Inert Gas Fusion-Infrared Absorptiometry
The inert gas fusion-infrared absorptiometry is an effective means of determination of oxygen. The results need to be calibrated with reference materials (RMs), which is required to have the similar composition as the samples. However, due to the limited types of RMs on the market, currently, calibration with different matrix is widely used in the determination of oxygen of various materials. In this study, oxygen content was measured in 17 types of materials, including steels, metal oxides, non-metallic compounds, organic compounds, and oxygen-containing salts. The accuracy of oxygen determination was analyzed, and it was concluded that steel and iron oxide are effective RMs for low and high oxygen determination, respectively. It provides the experimental basis for the application of calibration with different matrix RMs to the determination of oxygen by inert gas fusion-infrared absorptiometry.
Characterization of vanillin carbon isotope delta reference materials
Stable carbon isotope ratio measurements are used to investigate the provenance of vanillin. In this study, a variety of commercial vanillin samples and vanilla products were analyzed to provide a frame of reference for the variability of carbon isotope delta values in various vanillin samples, with the results ranging from −20.6 to −36.7‰ relative to the Vienna Peedee Belemnite (VPDB). We present information on the development of two synthetic vanillin reference materials, VANA-1 and VANB-1, prepared in 0.75 g units in glass vials, to be used for the calibration of carbon isotope delta measurements of vanillin and other easily combustible organic materials. Characterization of 40 vials each of VANA-1 and VANB-1 was performed by three laboratories over several measurement sequences. The certified carbon isotope delta values are −31.30 ± 0.06‰ (VANA-1) and −25.85 ± 0.05‰ (VANB-1). These uncertainties, for the 95% confidence level, include considerations for measurement uncertainty, coherence of the reference materials used for calibration, batch homogeneity, and stability during storage and transportation. The results are traceable to the VPDB through a set of nine reference materials (IAEA-CH-6, USGS65, IAEA-600, NBS22, USGS61, IAEA-603, IAEA-610, IAEA-611, and IAEA-612). For up to date certified values, users should refer to doi.org/10.4224/crm.2022.vana-1 and doi.org/10.4224/crm.2022.vanb-1.
Optimizing Available Tools for Achieving Result Standardization: Value Added by Joint Committee on Traceability in Laboratory Medicine (JCTLM)
Abstract Background The JCTLM created a Task Force on Reference Measurement System Implementation (TF-RMSI) to provide guidance on metrological traceability implementation for the in vitro diagnostics (IVD) community. Content TF-RMSI investigated the reference measurement systems (RMS) for 13 common measurands by applying the following procedural steps: (a) extracting data from the JCTLM database of available certified reference materials (CRMs) and reference measurement procedures (RMPs); (b) describing the RMS to which each recruited CRM or RMP belongs; (c) identifying the intended use of the CRMs, and, if used as a common calibrator for IVD measuring systems and/or trueness assessment of field methods was included, checking the CRM’s certificate for information about commutability with clinical samples; and (d) checking if the CRM or RMP measurement uncertainty (MU) has the potential to be small enough to avoid significantly affecting the analytical performance specifications (APS) for MU of clinical sample results when the MU from the IVD calibrator and from the end-user measuring system were combined. Summary We produced a synopsis of JCTLM-listed higher-order CRMs and RMPs for the selected measurands, including their main characteristics for implementing traceability and fulfilling (or not) the APS for suitable MU. Results showed that traceability to higher-order references can be established by IVD manufacturers within the defined APS for most of the 13 selected measurands. However, some measurands do not yet have suitable CRMs for use as common calibrators. For these measurands, splitting clinical samples with a laboratory performing the RMP may provide a practical alternative for establishing a calibration hierarchy.
Innovative reference materials for method validation in microplastic analysis including interlaboratory comparison exercises
Reference materials (RMs) are vital tools in the validation of methods used to detect environmental pollutants. Microplastics, a relatively new environmental pollutant, require a variety of complex approaches to address their presence in environmental samples. Both interlaboratory comparison (ILC) studies and RMs are essential to support the validation of methods used in microplastic analysis. Presented here are results of quality assurance and quality control (QA/QC) performed on two types of candidate microplastic RMs: dissolvable gelatin capsules and soda tablets. These RMs have been used to support numerous international ILC studies in recent years (2019–2022). Dissolvable capsules containing polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyethylene (PE), and polystyrene (PS), in different size fractions from 50 to 1000 µm, were produced for one ILC study, obtaining relative standard deviation (RSD) from 0 to 24%. The larger size fraction allowed for manual addition of particles to the capsules, yielding 0% error and 100% recovery during QA/QC. Dissolvable capsules were replaced by soda tablets in subsequent ILC studies and recovery test exercises because they were found to be a more reliable carrier for microplastic RMs. Batches of soda tablets were produced containing different single and multiple polymer mixtures, i.e., PE, PET, PS, PVC, polypropylene (PP), and polycarbonate (PC), with RSD ranging from 8 to 21%. Lastly, soda tablets consisting of a mixture of PE, PVC, and PS (125–355 µm) were produced and used for recovery testing during pretreatment of environmental samples. These had an RSD of 9%. Results showed that soda tablets and capsules containing microplastics >50 µm could be produced with sufficient precision for internal recovery tests and external ILC studies. Further work is required to optimize this method for smaller microplastics (< 50 µm) because variation was found to be too large during QA/QC. Nevertheless, this approach represents a valuable solution addressing many of the challenges associated with validating microplastic analytical methods.
Paving the way for new and challenging matrix reference materials—particle suspensions at the core of material processing providing RMs for method development and method validation
Sufficient homogeneity of the certified parameter(s) over the whole fill series of a matrix reference material (RM) is a fundamental quality criterion. In practice, the heterogeneity of the target parameter is evaluated, whereby a relative value can be calculated of how much the target parameter is varying over the RM-batch. A high degree of homogeneity (low heterogeneity) is an inherent quality mark of a good RM. Here, we report how challenging matrix RMs were produced by using particle suspensions at the core of the material processing step. The examples of matrix RMs produced span from whole water reference materials for persistent organic pollutants, PM2.5-like atmospheric dust certified for specific ions to microplastic RMs. Most of these RMs were subsequently used in different phases of analytical method development or for method validation. Common to all these matrices is that they cannot be easily mixed, handled, or dosed to prepare larger sample batches. In all cases, a continuously stirred suspension of particles was used during material processing. In general, relative between-bottle heterogeneities from 1.6 to 6% were achieved for the target parameters in these matrix presentations. Concerning developments of new CRMs in emerging fields, the co-dependence between the availability of validated analytical methods with good repeatability and testing materials with a known and high homogeneity of the target parameter(s) becomes particularly challenging. This situation is an RM/Method causality dilemma. To overcome that hurdle, strategies are proposed for stepwise processes where RM producers and a network of analytical method developers could work hand in hand. In addition, development of a portfolio of inexpensive and well-homogenised common samples coupled with a reporting interface is suggested. This would benefit method developers and RM producers alike. As more and more data is compiled for a specific matrix, it paves the way for new and challenging RMs that can later be used by a wider community.
Preparation of a reference material for microplastics in water—evaluation of homogeneity
Validation of analytical methods for measurements of microplastics (MP) is severely hampered because of a general lack of reference materials, RM. There is a great need to develop such reference materials. This study presents a concept of three-component kit with immobilised MP in solid NaCl, a surfactant and clean water that can be applied for the production of many types of MP RMs. As proof of concept, an RM for polyethylene terephthalate (PET) particles in water was prepared and evaluated for its homogeneity. The particles ranged from 30 μm (Feretmin) to about 200 μm adapted by wet sieving. A specific number of PET particles were immobilized in about 0.29 g of solid NaCl by freeze-drying 1 mL of a NaCl suspension. By using manual and automated counting, twenty reconstituted 1-L water samples were evaluated for homogeneity with respect to number of PET particles from 30 μm to > 200 μm/L of water. The number of particles was 730 ± 120 (mean ± one standard deviation (SD); n = 10) and 865 ± 155 particles (n = 10) obtained by optical microscopy in two independent laboratories. This corresponded to relative SDs of 16.4 and 17.9% and a mean of 797 ± 151 particles (18.9% RSD, for n = 20). Homogeneity studies of the NaCl carrier without reconstitution resulted in 794 ± 60 particles (7.5% RSD). The homogeneity of PET in the salt carrier was also evaluated directly with respect to mass of PET per vial using an ultra-micro balance. An average mass of 293 ± 41 μg of PET was obtained (14, % RSD for n = 14). Micrographs were recorded to demonstrate the absence of major sources of contamination of the RM components. Information about the particle size distribution and particle shapes was obtained by laser diffraction (LD) and dynamic image analysis (DIA). In addition, the identity of the PET polymer was confirmed by Raman and FT-IR spectroscopy. The RM was developed for a large-scale inter-laboratory comparison of PET particles in water (ILC). Based on the homogeneity results, the material was found to be sufficiently homogeneous to be of meaningful use in the ILC. In a 3-day process, more than 500 samples of PET particles in the NaCl carrier were prepared with good potential for further upscaling with respect to the number of vials or with other kinds of polymers. The stability of PET was not evaluated but it was deemed to be stable for the duration of the ILC.
Reference materials for MS-based untargeted metabolomics and lipidomics: a review by the metabolomics quality assurance and quality control consortium (mQACC)
IntroductionThe metabolomics quality assurance and quality control consortium (mQACC) is enabling the identification, development, prioritization, and promotion of suitable reference materials (RMs) to be used in quality assurance (QA) and quality control (QC) for untargeted metabolomics research.ObjectivesThis review aims to highlight current RMs, and methodologies used within untargeted metabolomics and lipidomics communities to ensure standardization of results obtained from data analysis, interpretation and cross-study, and cross-laboratory comparisons. The essence of the aims is also applicable to other ‘omics areas that generate high dimensional data.ResultsThe potential for game-changing biochemical discoveries through mass spectrometry-based (MS) untargeted metabolomics and lipidomics are predicated on the evolution of more confident qualitative (and eventually quantitative) results from research laboratories. RMs are thus critical QC tools to be able to assure standardization, comparability, repeatability and reproducibility for untargeted data analysis, interpretation, to compare data within and across studies and across multiple laboratories. Standard operating procedures (SOPs) that promote, describe and exemplify the use of RMs will also improve QC for the metabolomics and lipidomics communities.ConclusionsThe application of RMs described in this review may significantly improve data quality to support metabolomics and lipidomics research. The continued development and deployment of new RMs, together with interlaboratory studies and educational outreach and training, will further promote sound QA practices in the community.