Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
964 result(s) for "Reflex, Startle - physiology"
Sort by:
The effect of intranasal oxytocin treatment on conditioned fear extinction and recall in a healthy human sample
Rationale To improve outcomes for patients undergoing extinction-based therapies (e.g., exposure therapy) for anxiety disorders such as post-traumatic stress disorder (PTSD), there has been interest in identifying pharmaceutical compounds that might facilitate fear extinction learning and recall. Oxytocin (OT) is a mammalian neuropeptide that modulates activation of fear extinction-based neural circuits and fear responses. Little is known, however, about the effects of OT treatment on conditioned fear responding and extinction in humans. Objectives The purpose of the present study was to assess the effects of OT in a fear-potentiated startle task of fear conditioning and extinction. Methods A double-blind, placebo-controlled study of 44 healthy human participants was conducted. Participants underwent a conditioned fear acquisition procedure, after which they were randomized to treatment group and delivered OT (24 IU) or placebo via intranasal (IN) spray. Forty-five minutes after treatment, participants underwent extinction training. Twenty-four hours later, subjects were tested for extinction recall. Results Relative to placebo, the OT group showed increased fear-potentiated startle responding during the earliest stage of extinction training relative to placebo; however, all treatment groups showed the same level of reduced responding by the end of extinction training. Twenty-four hours later, the OT group showed significantly higher recall of extinction relative to placebo. Conclusions The current study provides preliminary evidence that OT may facilitate fear extinction recall in humans. These results support further study of OT as a potential adjunctive treatment for extinction-based therapies in fear-related disorders.
Intermittent theta-burst stimulation to the right dorsolateral prefrontal cortex may increase potentiated startle in healthy individuals
Repetitive transcranial magnetic stimulation (rTMS) treatment protocols targeting the right dlPFC have been effective in reducing anxiety symptoms comorbid with depression. However, the mechanism behind these effects is unclear. Further, it is unclear whether these results generalize to non-depressed individuals. We conducted a series of studies aimed at understanding the link between anxiety potentiated startle and the right dlPFC, following a previous study suggesting that continuous theta burst stimulation (cTBS) to the right dlPFC can make people more anxious. Based on these results we hypothesized that intermittent TBS (iTBS), which is thought to have opposing effects on plasticity, may reduce anxiety when targeted at the same right dlPFC region. In this double-blinded, cross-over design, 28 healthy subjects underwent 12 study visits over a 4-week period. During each of their 2 stimulation weeks, they received four 600 pulse iTBS sessions (2/day), with a post-stimulation testing session occurring 24 h following the final iTBS session. One week they received active stimulation, one week they received sham. Stimulation weeks were separated by a 1-week washout period and the order of active/sham delivery was counterbalanced across subjects. During the testing session, we induced anxiety using the threat of unpredictable shock and measured anxiety potentiated startle. Contrary to our initial hypothesis, subjects showed increased startle reactivity following active compared to sham stimulation. These results replicate work from our two previous trials suggesting that TMS to the right dlPFC increases anxiety potentiated startle, independent of both the pattern of stimulation and the timing of the post stimulation measure. Although these results confirm a mechanistic link between right dlPFC excitability and startle, capitalizing upon this link for the benefit of patients will require future exploration.
Blocking human fear memory with the matrix metalloproteinase inhibitor doxycycline
Learning to predict threat is a fundamental ability of many biological organisms, and a laboratory model for anxiety disorders. Interfering with such memories in humans would be of high clinical relevance. On the basis of studies in cell cultures and slice preparations, it is hypothesised that synaptic remodelling required for threat learning involves the extracellular enzyme matrix metalloproteinase (MMP) 9. However, in vivo evidence for this proposal is lacking. Here we investigate human Pavlovian fear conditioning under the blood–brain barrier crossing MMP inhibitor doxycyline in a pre-registered, randomised, double-blind, placebo-controlled trial. We find that recall of threat memory, measured with fear-potentiated startle 7 days after acquisition, is attenuated by ~60% in individuals who were under doxycycline during acquisition. This threat memory impairment is also reflected in increased behavioural surprise signals to the conditioned stimulus during subsequent re-learning, and already late during initial acquisition. Our findings support an emerging view that extracellular signalling pathways are crucially required for threat memory formation. Furthermore, they suggest novel pharmacological methods for primary prevention and treatment of posttraumatic stress disorder.
Acute prazosin administration does not reduce stressor reactivity in healthy adults
RationaleNorepinephrine plays a critical role in the stress response. Clarifying the psychopharmacological effects of norepinephrine manipulation on stress reactivity in humans has important implications for basic neuroscience and treatment of stress-related psychiatric disorders, such as posttraumatic stress disorder and alcohol use disorders. Preclinical research implicates the norepinephrine alpha-1 receptor in responses to stressors. The No Shock, Predictable Shock, Unpredictable Shock (NPU) task is a human laboratory paradigm that is well positioned to test cross-species neurobiological stress mechanisms and advance experimental therapeutic approaches to clinical trials testing novel treatments for psychiatric disorders.ObjectivesWe hypothesized that acute administration of prazosin, a noradrenergic alpha-1 antagonist, would have a larger effect on reducing stress reactivity during unpredictable, compared to predictable, stressors in the NPU task.MethodsWe conducted a double-blind, placebo-controlled, crossover randomized controlled trial in which 64 healthy adults (32 female) completed the NPU task at two visits (2 mg prazosin vs. placebo).ResultsA single acute dose of 2 mg prazosin did not reduce stress reactivity in a healthy adult sample. Neither NPU startle potentiation nor self-reported anxiety was reduced by prazosin (vs. placebo) during unpredictable (vs. predictable) stressors.ConclusionsFurther research is needed to determine whether this failure to translate preclinical neuroscience to human laboratory models is due to methodological factors (e.g., acute vs. chronic drug administration, brain penetration, study population) and/or suggests limited clinical utility of noradrenergic alpha-1 antagonists for treating stress-related psychiatric disorders.
Placebo analgesia induced by verbal suggestion in the context of experimentally induced fear and anxiety
The role of state anxiety and state fear in placebo effects is still to be determined. We aimed to investigate the effect of fear of movement-related pain (FMRP) and contextual pain related anxiety (CPRA) on the magnitude of placebo analgesia induced by verbal suggestion. Fifty-six female participants completed a modified voluntary joystick movement paradigm (VJMP) where half participated in a predictable pain condition (PC), in which one of the joystick movements is always followed by pain and the other movement is never followed by pain, and half in an unpredictable pain condition (UC), in which pain was delivered unpredictably. By varying the level of pain predictability, FMRP and CPRA were induced in PC and UC respectively. Colour stimuli were presented at the beginning of each trail. Half of the participants were verbally informed that the green or red colour indicated less painful stimuli (experimental groups), the other half did not receive any suggestion (control groups). We measured self-reported pain intensity, expectancy of pain intensity (PC only), pain related fear and anxiety (eyeblink startle response and self-ratings) and avoidance behaviour (movement-onset latency and duration). The results indicate that the placebo effect was successfully induced in both experimental conditions. In the PC, the placebo effect was predicted by expectancy. Despite the fact that FMRP and CPRA were successfully induced, no difference was found in the magnitude of the placebo effect between PC and UC. Concluding, we did not find a divergent effect of fear and anxiety on placebo analgesia.
Effect of intermittent theta burst stimulation combined with acoustic startle priming motor training on upper limb motor function and neural plasticity in stroke individuals: study protocol for a randomised controlled proof-of-concept trial
IntroductionStroke is a major cause of acquired disability globally, yet the neural mechanisms driving motor recovery post-stroke remain elusive. Recent research has underscored the growing significance of subcortical pathways in neural plasticity and motor control. Among these, the cortico-reticulospinal tract (CRST) has gained attention in rehabilitation due to its unique ascending and descending structural features as well as its cellular properties which position it as an excellent candidate to compensate for inadequate motor control post-stroke. However, the optimal strategies to harness the CRST for motor recovery remain unknown. Non-invasive modulation of the CRST presents a promising though challenging, therapeutic opportunity. Acoustic startle priming (ASP) training and intermittent theta burst stimulation (iTBS) are emerging as potential methods to regulate CRST function. This study aims to investigate the feasibility of segmentally modulating the cortico-reticular and reticulospinal tracts through ASP and iTBS while evaluating the resulting therapeutic effects.Methods and analysisThis is a randomised, blinded interventional trial with three parallel groups. A total of 36 eligible participants will be randomly assigned to one of three groups: (1) iTBS+ASP group, (2) iTBS+non-ASP group, (3) sham iTBS+ASP group. The trial comprises four phases: baseline assessment, post-first intervention assessment, assessment after 3 weeks of intervention and a 4-week follow-up. The primary outcomes are the changes in the Fugl-Meyer Assessment-Upper Extremity and Modified Ashworth Scale after the 3-week intervention. Secondary outcomes include neurophysiological metrics and neuroimaging results from diffusion tensor imaging and resting-state functional MRI.Ethics and disseminationThe trial is registered with the Chinese Clinical Trial Registry (Registration No. ChiCTR2400085220) and Medical Ethics Committee of Tongji Hospital, affiliated with Tongji Medical College, Huazhong University of Science and Technology (Registration No.TJ-IRB20231109). It will be conducted in the Departments of Rehabilitation Medicine and Radiology at Tongji Hospital in Wuhan, China. The findings will be disseminated through peer-reviewed journal publications and presentations at scientific conferences.Trial registration numberChiCTR2400085220.
Does trait anxiety influence effects of oxytocin on eye-blink startle reactivity? A randomized, double-blind, placebo-controlled crossover study
Previous research has demonstrated that the neuropeptide oxytocin modulates social behaviors and reduces anxiety. However, effects of oxytocin on startle reactivity, a well-validated measure of defense system activation related to fear and anxiety, have been inconsistent. Here we investigated the influence of oxytocin on startle reactivity with particular focus on the role of trait anxiety. Forty-four healthy male participants attended two experimental sessions. They received intranasal oxytocin (24 IU) in one session and placebo in the other. Startle probes were presented in combination with pictures of social and non-social content. Eye-blink startle magnitude was measured by electromyography over the musculus orbicularis oculi in response to 95 dB noise bursts. Participants were assigned to groups of high vs. low trait anxiety based on their scores on the trait form of the Spielberger State-Trait Anxiety Inventory (STAI). A significant interaction effect of oxytocin with STAI confirmed that trait anxiety moderated the effect of oxytocin on startle reactivity. Post-hoc tests indicated that for participants with elevated trait anxiety, oxytocin increased startle magnitude, particularly when watching non-social pictures, while this was not the case for participants with low trait anxiety. Results indicate that effects of oxytocin on defense system activation depend on individual differences in trait anxiety. Trait anxiety may be an important moderator variable that should be considered in human studies on oxytocin effects.
The Effects of the Preferential 5-HT2A Agonist Psilocybin on Prepulse Inhibition of Startle in Healthy Human Volunteers Depend on Interstimulus Interval
Schizophrenia patients exhibit impairments in prepulse inhibition (PPI) of the startle response. Hallucinogenic 5-HT 2A receptor agonists are used for animal models of schizophrenia because they mimic some symptoms of schizophrenia in humans and induce PPI deficits in animals. Nevertheless, one report indicates that the 5-HT 2A receptor agonist psilocybin increases PPI in healthy humans. Hence, we investigated these inconsistent results by assessing the dose-dependent effects of psilocybin on PPI in healthy humans. Sixteen subjects each received placebo or 115, 215, and 315 μg/kg of psilocybin at 4-week intervals in a randomized and counterbalanced order. PPI at 30-, 60-, 120-, 240-, and 2000-ms interstimulus intervals (ISIs) was measured 90 and 165 min after drug intake, coinciding with the peak and post-peak effects of psilocybin. The effects of psilocybin on psychopathological core dimensions and sustained attention were assessed by the Altered States of Consciousness Rating Scale (5D-ASC) and the Frankfurt Attention Inventory (FAIR). Psilocybin dose-dependently reduced PPI at short (30 ms), had no effect at medium (60 ms), and increased PPI at long (120–2000 ms) ISIs, without affecting startle reactivity or habituation. Psilocybin dose-dependently impaired sustained attention and increased all 5D-ASC scores with exception of Auditory Alterations. Moreover, psilocybin-induced impairments in sustained attention performance were positively correlated with reduced PPI at the 30 ms ISI and not with the concomitant increases in PPI observed at long ISIs. These results confirm the psilocybin-induced increase in PPI at long ISIs and reveal that psilocybin also produces a decrease in PPI at short ISIs that is correlated with impaired attention and consistent with deficient PPI in schizophrenia.
The CRH1 Antagonist GSK561679 Increases Human Fear But Not Anxiety as Assessed by Startle
Fear to predictable threat and anxiety to unpredictable threat reflect distinct processes mediated by different brain structures, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), respectively. This study tested the hypothesis that the corticotropin-releasing factor (CRF1) antagonist GSK561679 differentially reduces anxiety but increases fear in humans. A total of 31 healthy females received each of four treatments: placebo, 50 mg GSK561679 (low-GSK), 400 mg GSK561679 (high-GSK), and 1 mg alprazolam in a crossover design. Participants were exposed to three conditions during each of the four treatments. The three conditions included one in which predictable aversive shocks were signaled by a cue, a second during which shocks were administered unpredictably, and a third condition without shock. Fear and anxiety were assessed using the acoustic startle reflex. High-GSK had no effect on startle potentiation during unpredictable threat (anxiety) but increased startle potentiation during the predictable condition (fear). Low-GSK did not affect startle potentiation across conditions. Consistent with previous findings, alprazolam reduced startle potentiation during unpredictable threat but not during predictable threat. The increased fear by high-GSK replicates animal findings and suggests a lift of the inhibitory effect of the BNST on the amygdala by the CRF1 antagonist.
Alcohol’s effects on emotionally motivated attention, defensive reactivity and subjective anxiety during uncertain threats
Developing a better understanding of how and under what circumstances alcohol affects the emotions, cognitions and neural functions that precede and contribute to dangerous behaviors during intoxication may help to reduce their occurrence. Alcohol intoxication has recently been shown to reduce defensive reactivity and anxiety more during uncertain vs certain threat. However, alcohol’s effects on emotionally motivated attention to these threats are unknown. Alcohol may disrupt both affective response to and attentional processing of uncertain threats making intoxicated individuals less able to avoid dangerous and costly behaviors. To test this possibility, we examined the effects of a broad range of blood alcohol concentrations on 96 participants’ sub-cortically mediated defensive reactivity (startle potentiation), retrospective subjective anxiety (self-report) and cortically assessed emotionally motivated attention (probe P3 event related potential) while they experienced visually cued uncertain and certain location electric shock threat. As predicted, alcohol decreased defensive reactivity and subjective anxiety more during uncertain vs certain threat. In a novel finding, alcohol dampened emotionally motivated attention during uncertain but not certain threat. This effect appeared independent of alcohol’s effects on defensive reactivity and subjective anxiety. These results suggest that alcohol intoxication dampens processing of uncertain threats while leaving processing of certain threats intact.