Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
161,654 result(s) for "Regression model"
Sort by:
Quantile Regression: 40 Years On
Since Quetelet's work in the nineteenth century, social science has iconified the average man, that hypothetical man without qualities who is comfortable with his head in the oven and his feet in a bucket of ice. Conventional statistical methods since Quetelet have sought to estimate the effects of policy treatments for this average man. However, such effects are often quite heterogeneous: Medical treatments may improve life expectancy but also impose serious short-term risks; reducing class sizes may improve the performance of good students but not help weaker ones, or vice versa. Quantile regression methods can help to explore these heterogeneous effects. Some recent developments in quantile regression methods are surveyed in this review.
The normal law under linear restrictions: simulation and estimation via minimax tilting
Simulation from the truncated multivariate normal distribution in high dimensions is a recurrent problem in statistical computing and is typically only feasible by using approximate Markov chain Monte Carlo sampling. We propose a minimax tilting method for exact independently and identically distributed data simulation from the truncated multivariate normal distribution. The new methodology provides both a method for simulation and an efficient estimator to hitherto intractable Gaussian integrals. We prove that the estimator has a rare vanishing relative error asymptotic property. Numerical experiments suggest that the scheme proposed is accurate in a wide range of set-ups for which competing estimation schemes fail. We give an application to exact independently and identically distributed data simulation from the Bayesian posterior of the probit regression model.
Approximate residual balancing
There are many settings where researchers are interested in estimating average treatment effects and are willing to rely on the unconfoundedness assumption, which requires that the treatment assignment be as good as random conditional on pretreatment variables. The unconfoundedness assumption is often more plausible if a large number of pretreatment variables are included in the analysis, but this can worsen the performance of standard approaches to treatment effect estimation. We develop a method for debiasing penalized regression adjustments to allow sparse regression methods like the lasso to be used for √n-consistent inference of average treatment effects in high dimensional linear models. Given linearity, we do not need to assume that the treatment propensities are estimable, or that the average treatment effect is a sparse contrast of the outcome model parameters. Rather, in addition to standard assumptions used to make lasso regression on the outcome model consistent under 1-norm error, we require only overlap, i.e. that the propensity score be uniformly bounded away from 0 and 1. Procedurally, our method combines balancing weights with a regularized regression adjustment.
Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects
Linear regressions with period and group fixed effects are widely used to estimate treatment effects. We show that they estimate weighted sums of the average treatment effects (ATE) in each group and period, with weights that may be negative. Due to the negative weights, the linear regression coefficient may for instance be negative while all the ATEs are positive. We propose another estimator that solves this issue. In the two applications we revisit, it is significantly different from the linear regression estimator.
Modeling Spatial Processes with Unknown Extremal Dependence Class
Many environmental processes exhibit weakening spatial dependence as events become more extreme. Well-known limiting models, such as max-stable or generalized Pareto processes, cannot capture this, which can lead to a preference for models that exhibit a property known as asymptotic independence. However, weakening dependence does not automatically imply asymptotic independence, and whether the process is truly asymptotically (in)dependent is usually far from clear. The distinction is key as it can have a large impact upon extrapolation, that is, the estimated probabilities of events more extreme than those observed. In this work, we present a single spatial model that is able to capture both dependence classes in a parsimonious manner, and with a smooth transition between the two cases. The model covers a wide range of possibilities from asymptotic independence through to complete dependence, and permits weakening dependence of extremes even under asymptotic dependence. Censored likelihood-based inference for the implied copula is feasible in moderate dimensions due to closed-form margins. The model is applied to oceanographic datasets with ambiguous true limiting dependence structure. Supplementary materials for this article are available online.
Inference in Linear Regression Models with Many Covariates and Heteroscedasticity
The linear regression model is widely used in empirical work in economics, statistics, and many other disciplines. Researchers often include many covariates in their linear model specification in an attempt to control for confounders. We give inference methods that allow for many covariates and heteroscedasticity. Our results are obtained using high-dimensional approximations, where the number of included covariates is allowed to grow as fast as the sample size. We find that all of the usual versions of Eicker-White heteroscedasticity consistent standard error estimators for linear models are inconsistent under this asymptotics. We then propose a new heteroscedasticity consistent standard error formula that is fully automatic and robust to both (conditional) heteroscedasticity of unknown form and the inclusion of possibly many covariates. We apply our findings to three settings: parametric linear models with many covariates, linear panel models with many fixed effects, and semiparametric semi-linear models with many technical regressors. Simulation evidence consistent with our theoretical results is provided, and the proposed methods are also illustrated with an empirical application. Supplementary materials for this article are available online.
Optimal Bandwidth Choice for the Regression Discontinuity Estimator
We investigate the choice of the bandwidth for the regression discontinuity estimator. We focus on estimation by local linear regression, which was shown to have attractive properties (Porter, J. 2003, \"Estimation in the Regression Discontinuity Model\" (unpublished, Department of Economics, University of Wisconsin, Madison)). We derive the asymptotically optimal bandwidth under squared error loss. This optimal bandwidth depends on unknown functionals of the distribution of the data and we propose simple and consistent estimators for these functionals to obtain a fully data-driven bandwidth algorithm. We show that this bandwidth estimator is optimal according to the criterion of Li (1987, \"Asymptotic Optimality for C p , C L , Cross-validation and Generalized Cross-validation: Discrete Index Set\", Annals of Statistics, 15, 958–975), although it is not unique in the sense that alternative consistent estimators for the unknown functionals would lead to bandwidth estimators with the same optimality properties. We illustrate the proposed bandwidth, and the sensitivity to the choices made in our algorithm, by applying the methods to a data set previously analysed by Lee (2008, \"Randomized Experiments from Non-random Selection in U.S. House Elections\", Journal of Econometrics, 142, 675–697) as well as by conducting a small simulation study.
Provable sparse tensor decomposition
We propose a novel sparse tensor decomposition method, namely the tensor truncated power method, that incorporates variable selection in the estimation of decomposition components. The sparsity is achieved via an efficient truncation step embedded in the tensor power iteration. Our method applies to a broad family of high dimensional latent variable models, including high dimensional Gaussian mixtures and mixtures of sparse regressions. A thorough theoretical investigation is further conducted. In particular, we show that the final decomposition estimator is guaranteed to achieve a local statistical rate, and we further strengthen it to the global statistical rate by introducing a proper initialization procedure. In high dimensional regimes, the statistical rate obtained significantly improves those shown in the existing nonsparse decomposition methods. The empirical advantages of tensor truncated power are confirmed in extensive simulation results and two real applications of click-through rate prediction and high dimensional gene clustering.
A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data
Interval-censored failure time data arise in a number of fields and many authors have discussed various issues related to their analysis. However, most of the existing methods are for univariate data and there exists only limited research on bivariate data, especially on regression analysis of bivariate interval-censored data. We present a class of semiparametric transformation models for the problem and for inference, a sieve maximum likelihood approach is developed. The model provides a great flexibility, in particular including the commonly used proportional hazards model as a special case, and in the approach, Bernstein polynomials are employed. The strong consistency and asymptotic normality of the resulting estimators of regression parameters are established and furthermore, the estimators are shown to be asymptotically efficient. Extensive simulation studies are conducted and indicate that the proposed method works well for practical situations. Supplementary materials for this article are available online.
Regression Discontinuity Designs in Economics
This paper provides an introduction and \"user guide\" to Regression Discontinuity (RD) designs for empirical researchers. It presents the basic theory behind the research design, details when RD is likely to be valid or invalid given economic incentives, explains why it is considered a \"quasi-experimental\" design, and summarizes different ways (with their advantages and disadvantages) of estimating RD designs and the limitations of interpreting these estimates. Concepts are discussed using examples drawn from the growing body of empirical research using RD.