Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
249 result(s) for "Reinfection - prevention "
Sort by:
Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: a systematic review and meta-regression
The global surge in the omicron (B.1.1.529) variant has resulted in many individuals with hybrid immunity (immunity developed through a combination of SARS-CoV-2 infection and vaccination). We aimed to systematically review the magnitude and duration of the protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against infection and severe disease caused by the omicron variant. For this systematic review and meta-regression, we searched for cohort, cross-sectional, and case–control studies in MEDLINE, Embase, Web of Science, ClinicalTrials.gov, the Cochrane Central Register of Controlled Trials, the WHO COVID-19 database, and Europe PubMed Central from Jan 1, 2020, to June 1, 2022, using keywords related to SARS-CoV-2, reinfection, protective effectiveness, previous infection, presence of antibodies, and hybrid immunity. The main outcomes were the protective effectiveness against reinfection and against hospital admission or severe disease of hybrid immunity, hybrid immunity relative to previous infection alone, hybrid immunity relative to previous vaccination alone, and hybrid immunity relative to hybrid immunity with fewer vaccine doses. Risk of bias was assessed with the Risk of Bias In Non-Randomized Studies of Interventions Tool. We used log-odds random-effects meta-regression to estimate the magnitude of protection at 1-month intervals. This study was registered with PROSPERO (CRD42022318605). 11 studies reporting the protective effectiveness of previous SARS-CoV-2 infection and 15 studies reporting the protective effectiveness of hybrid immunity were included. For previous infection, there were 97 estimates (27 with a moderate risk of bias and 70 with a serious risk of bias). The effectiveness of previous infection against hospital admission or severe disease was 74·6% (95% CI 63·1–83·5) at 12 months. The effectiveness of previous infection against reinfection waned to 24·7% (95% CI 16·4–35·5) at 12 months. For hybrid immunity, there were 153 estimates (78 with a moderate risk of bias and 75 with a serious risk of bias). The effectiveness of hybrid immunity against hospital admission or severe disease was 97·4% (95% CI 91·4–99·2) at 12 months with primary series vaccination and 95·3% (81·9–98·9) at 6 months with the first booster vaccination after the most recent infection or vaccination. Against reinfection, the effectiveness of hybrid immunity following primary series vaccination waned to 41·8% (95% CI 31·5–52·8) at 12 months, while the effectiveness of hybrid immunity following first booster vaccination waned to 46·5% (36·0–57·3) at 6 months. All estimates of protection waned within months against reinfection but remained high and sustained for hospital admission or severe disease. Individuals with hybrid immunity had the highest magnitude and durability of protection, and as a result might be able to extend the period before booster vaccinations are needed compared to individuals who have never been infected. WHO COVID-19 Solidarity Response Fund and the Coalition for Epidemic Preparedness Innovations.
The coronavirus is here to stay — here’s what that means
A Nature survey shows many scientists expect the virus that causes COVID-19 to become endemic, but it could pose less danger over time. A Nature survey shows many scientists expect the virus that causes COVID-19 to become endemic, but it could pose less danger over time.
Past SARS-CoV-2 infection protection against re-infection: a systematic review and meta-analysis
Understanding the level and characteristics of protection from past SARS-CoV-2 infection against subsequent re-infection, symptomatic COVID-19 disease, and severe disease is essential for predicting future potential disease burden, for designing policies that restrict travel or access to venues where there is a high risk of transmission, and for informing choices about when to receive vaccine doses. We aimed to systematically synthesise studies to estimate protection from past infection by variant, and where data allow, by time since infection. In this systematic review and meta-analysis, we identified, reviewed, and extracted from the scientific literature retrospective and prospective cohort studies and test-negative case-control studies published from inception up to Sept 31, 2022, that estimated the reduction in risk of COVID-19 among individuals with a past SARS-CoV-2 infection in comparison to those without a previous infection. We meta-analysed the effectiveness of past infection by outcome (infection, symptomatic disease, and severe disease), variant, and time since infection. We ran a Bayesian meta-regression to estimate the pooled estimates of protection. Risk-of-bias assessment was evaluated using the National Institutes of Health quality-assessment tools. The systematic review was PRISMA compliant and was registered with PROSPERO (number CRD42022303850). We identified a total of 65 studies from 19 different countries. Our meta-analyses showed that protection from past infection and any symptomatic disease was high for ancestral, alpha, beta, and delta variants, but was substantially lower for the omicron BA.1 variant. Pooled effectiveness against re-infection by the omicron BA.1 variant was 45·3% (95% uncertainty interval [UI] 17·3–76·1) and 44·0% (26·5–65·0) against omicron BA.1 symptomatic disease. Mean pooled effectiveness was greater than 78% against severe disease (hospitalisation and death) for all variants, including omicron BA.1. Protection from re-infection from ancestral, alpha, and delta variants declined over time but remained at 78·6% (49·8–93·6) at 40 weeks. Protection against re-infection by the omicron BA.1 variant declined more rapidly and was estimated at 36·1% (24·4–51·3) at 40 weeks. On the other hand, protection against severe disease remained high for all variants, with 90·2% (69·7–97·5) for ancestral, alpha, and delta variants, and 88·9% (84·7–90·9) for omicron BA.1 at 40 weeks. Protection from past infection against re-infection from pre-omicron variants was very high and remained high even after 40 weeks. Protection was substantially lower for the omicron BA.1 variant and declined more rapidly over time than protection against previous variants. Protection from severe disease was high for all variants. The immunity conferred by past infection should be weighed alongside protection from vaccination when assessing future disease burden from COVID-19, providing guidance on when individuals should be vaccinated, and designing policies that mandate vaccination for workers or restrict access, on the basis of immune status, to settings where the risk of transmission is high, such as travel and high-occupancy indoor settings. Bill & Melinda Gates Foundation, J Stanton, T Gillespie, and J and E Nordstrom.
COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants
As SARS-CoV-2 has been circulating for over a year, dozens of vaccine candidates are under development or in clinical use. The BNT162b2 mRNA COVID-19 vaccine induces spike protein-specific neutralizing antibodies associated with protective immunity. The emergence of the B.1.1.7 and B.1.351 variants has raised concerns of reduced vaccine efficacy and increased re-infection rates. Here we show, that after the second dose, the sera of BNT162b2-vaccinated health care workers (n = 180) effectively neutralize the SARS-CoV-2 variant with the D614G substitution and the B.1.1.7 variant, whereas the neutralization of the B.1.351 variant is five-fold reduced. Despite the reduction, 92% of the seronegative vaccinees have a neutralization titre of >20 for the B.1.351 variant indicating some protection. The vaccinees’ neutralization titres exceeded those of recovered non-hospitalized COVID-19 patients. Our work provides evidence that the second dose of the BNT162b2 vaccine induces cross-neutralization of at least some of the circulating SARS-CoV-2 variants. Emerging SARS-CoV-2 variants contain mutations in the spike protein that may affect vaccine efficacy. Here, Jalkanen et al . show, using sera from 180 BNT162b2-vaccinated health care workers, that neutralization of SARS-CoV2 variant B.1.1.7 is not affected, while neutralization of B.1.351 variant is five-fold reduced.
How bad is Omicron? What scientists know so far
COVID researchers are working at breakneck speed to learn about the variant’s transmissibility, severity and ability to evade vaccines. COVID researchers are working at breakneck speed to learn about the variant’s transmissibility, severity and ability to evade vaccines. A nurse puts on her personal protective equipment
Prospects for durable immune control of SARS-CoV-2 and prevention of reinfection
Immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is central to long-term control of the current pandemic. Despite our rapidly advancing knowledge of immune memory to SARS-CoV-2, understanding how these responses translate into protection against reinfection at both the individual and population levels remains a major challenge. An ideal outcome following infection or after vaccination would be a highly protective and durable immunity that allows for the establishment of high levels of population immunity. However, current studies suggest a decay of neutralizing antibody responses in convalescent patients, and documented cases of SARS-CoV-2 reinfection are increasing. Understanding the dynamics of memory responses to SARS-CoV-2 and the mechanisms of immune control are crucial for the rational design and deployment of vaccines and for understanding the possible future trajectories of the pandemic. Here, we summarize our current understanding of immune responses to and immune control of SARS-CoV-2 and the implications for prevention of reinfection.The duration of immunity to coronavirus disease 2019 (COVID-19) from prior infection and longer-term risk of reinfection are currently unclear. Cromer and colleagues discuss the immune control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the implications of this for the future control of the pandemic.
Effects of Vaccination and Previous Infection on Omicron Infections in Children
In a 6-month study in children while omicron was dominant, previous SARS-CoV-2 infection and the BNT162b2 vaccine lowered the risks of infection, hospitalization, and death, but protection against omicron declined rapidly.
Fast-spreading COVID variant can elude immune responses
Evidence that a variant of the coronavirus identified in South Africa might compromise immunity sparks concerns about vaccine effectiveness. Evidence that a variant of the coronavirus identified in South Africa might compromise immunity sparks concerns about vaccine effectiveness.
Herd immunity and prevention in HPV transmission with exogenous reinfection
Cervical cancer is a major global health concern, primarily caused by human papillomavirus (HPV), which spreads through unsafe sexual contact. Natural immunity often fails to provide full protection, permitting exogenous reinfection, which plays a key role in the persistence and transmission of HPV. This paper presents and analyzes a deterministic mathematical model of HPV transmission, incorporating exogenous re-infection. We utilized VIA test result data from 2019 to 2023 in Bangladesh to estimate key parameter values. The findings were validated through numerical simulations using MATLAB, and the analytical results demonstrated strong consistency with the numerical outputs. A critical insight is the presence of reinfection-induced backward bifurcation, indicating that targeting primary infections alone is insufficient for eradication, highlighting the need to address exogenous reinfection for effective control. We propose optimal control strategies tailored to resource-limited settings like Bangladesh, where limited vaccine access presents significant challenges, and community-driven education on safe sexual practices is crucial and continuously evolving. The results emphasize that the most effective approach combines targeted prevention with widespread community education, while precision in intervention implementation is essential to prevent reinfection surges that could prolong disease persistence and undermine control efforts. These insights provide a strong foundation for refining intervention strategies and offer valuable guidance for controlling HPV transmission through non-pharmaceutical interventions, particularly in resource-constrained settings.
Vaccine effectiveness against SARS-CoV-2 reinfection during periods of Alpha, Delta, or Omicron dominance: A Danish nationwide study
Individuals with a prior Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection have a moderate to high degree of protection against reinfection, though seemingly less so when the Omicron variant of SARS-CoV-2 started to circulate. The aim of this study was to evaluate the vaccine effectiveness (VE) against SARS-CoV-2 reinfection, Coronavirus Disease 2019 (COVID-19)-related hospitalization, and COVID-19-related death, in individuals with prior SARS-CoV-2 infection, and to assess the effect of time since vaccination during periods with different dominant SARS-CoV-2 variants. This study used a nationwide cohort design including all individuals with a confirmed SARS-CoV-2 infection, who were alive, and residing in Denmark between 1 January 2020 and 31 January 2022. Using Danish nationwide registries, we obtained information on SARS-CoV-2 infections, COVID-19 vaccination, age, sex, comorbidity, staying at hospital, and country of origin. The study population included were individuals with prior SARS-CoV-2 infection. Estimates of VE against SARS-CoV-2 reinfection with 95% confidence intervals (CIs) were calculated using a Poisson regression model and adjusted for age, sex, country of origin, comorbidity, staying at hospital, calendar time, and test incidence using a Cox regression model. The VE estimates were calculated separately for three periods with different dominant SARS-CoV-2 variants (Alpha (B.1.1.7), Delta (B.1.617.2), or Omicron (B.1.1.529)) and by time since vaccination using unvaccinated as the reference. In total, 148,527 person-years and 44,192 SARS-CoV-2 infections were included for the analysis regarding reinfections. The study population comprised of 209,814 individuals infected before or during the Alpha period, 292,978 before or during the Delta period, and 245,530 before or during the Omicron period. Of these, 40,281 individuals had completed their primary vaccination series during the Alpha period (19.2%), 190,026 during the Delta period (64.9%), and 158,563 during the Omicron period (64.6%). VE against reinfection following any COVID-19 vaccine type administered in Denmark, peaked at 71% (95% CI: -Inf to 100%) at 104 days or more after vaccination during the Alpha period, 94% (95% CI: 92% to 96%) 14 to 43 days after vaccination during the Delta period, and 60% (95% CI: 58% to 62%) 14 to 43 days after vaccination during the Omicron period. Waning immunity following vaccination was observed and was most pronounced during the Omicron period. Due to too few events, it was not possible to estimate VE for hospitalization and death. Study limitations include potentially undetected reinfections, differences in health-seeking behavior, or risk behavior between the compared groups. This study shows that in previously infected individuals, completing a primary vaccination series was associated with a significant protection against SARS-CoV-2 reinfection compared with no vaccination. Even though vaccination seems to protect to a lesser degree against reinfection with the Omicron variant, these findings are of public health relevance as they show that previously infected individuals still benefit from COVID-19 vaccination in all three variant periods.