Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
19,949 result(s) for "Reinforcement learning"
Sort by:
Reinforcement learning : an introduction
\"Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms.\"-- Provided by publisher.
Challenges of real-world reinforcement learning: definitions, benchmarks and analysis
Reinforcement learning (RL) has proven its worth in a series of artificial domains, and is beginning to show some successes in real-world scenarios. However, much of the research advances in RL are hard to leverage in real-world systems due to a series of assumptions that are rarely satisfied in practice. In this work, we identify and formalize a series of independent challenges that embody the difficulties that must be addressed for RL to be commonly deployed in real-world systems. For each challenge, we define it formally in the context of a Markov Decision Process, analyze the effects of the challenge on state-of-the-art learning algorithms, and present some existing attempts at tackling it. We believe that an approach that addresses our set of proposed challenges would be readily deployable in a large number of real world problems. Our proposed challenges are implemented in a suite of continuous control environments called realworldrl-suite which we propose an as an open-source benchmark.
A Systematic Study on Reinforcement Learning Based Applications
We have analyzed 127 publications for this review paper, which discuss applications of Reinforcement Learning (RL) in marketing, robotics, gaming, automated cars, natural language processing (NLP), internet of things security, recommendation systems, finance, and energy management. The optimization of energy use is critical in today’s environment. We mainly focus on the RL application for energy management. Traditional rule-based systems have a set of predefined rules. As a result, they may become rigid and unable to adjust to changing situations or unforeseen events. RL can overcome these drawbacks. RL learns by exploring the environment randomly and based on experience, it continues to expand its knowledge. Many researchers are working on RL-based energy management systems (EMS). RL is utilized in energy applications such as optimizing energy use in smart buildings, hybrid automobiles, smart grids, and managing renewable energy resources. RL-based energy management in renewable energy contributes to achieving net zero carbon emissions and a sustainable environment. In the context of energy management technology, RL can be utilized to optimize the regulation of energy systems, such as building heating, ventilation, and air conditioning (HVAC) systems, to reduce energy consumption while maintaining a comfortable atmosphere. EMS can be accomplished by teaching an RL agent to make judgments based on sensor data, such as temperature and occupancy, to modify the HVAC system settings. RL has proven beneficial in lowering energy usage in buildings and is an active research area in smart buildings. RL can be used to optimize energy management in hybrid electric vehicles (HEVs) by learning an optimal control policy to maximize battery life and fuel efficiency. RL has acquired a remarkable position in robotics, automated cars, and gaming applications. The majority of security-related applications operate in a simulated environment. The RL-based recommender systems provide good suggestions accuracy and diversity. This article assists the novice in comprehending the foundations of reinforcement learning and its applications.
Deep reinforcement learning: a survey
Deep reinforcement learning (RL) has become one of the most popular topics in artificial intelligence research. It has been widely used in various fields, such as end-to-end control, robotic control, recommendation systems, and natural language dialogue systems. In this survey, we systematically categorize the deep RL algorithms and applications, and provide a detailed review over existing deep RL algorithms by dividing them into modelbased methods, model-free methods, and advanced RL methods. We thoroughly analyze the advances including exploration, inverse RL, and transfer RL. Finally, we outline the current representative applications, and analyze four open problems for future research.
Learning team-based navigation: a review of deep reinforcement learning techniques for multi-agent pathfinding
Multi-agent pathfinding (MAPF) is a critical field in many large-scale robotic applications, often being the fundamental step in multi-agent systems. The increasing complexity of MAPF in complex and crowded environments, however, critically diminishes the effectiveness of existing solutions. In contrast to other studies that have either presented a general overview of the recent advancements in MAPF or extensively reviewed Deep Reinforcement Learning (DRL) within multi-agent system settings independently, our work presented in this review paper focuses on highlighting the integration of DRL-based approaches in MAPF. Moreover, we aim to bridge the current gap in evaluating MAPF solutions by addressing the lack of unified evaluation indicators and providing comprehensive clarification on these indicators. Finally, our paper discusses the potential of model-based DRL as a promising future direction and provides its required foundational understanding to address current challenges in MAPF. Our objective is to assist readers in gaining insight into the current research direction, providing unified indicators for comparing different MAPF algorithms and expanding their knowledge of model-based DRL to address the existing challenges in MAPF.
Explainable reinforcement learning for broad-XAI: a conceptual framework and survey
Broad-XAI moves away from interpreting individual decisions based on a single datum and aims to provide integrated explanations from multiple machine learning algorithms into a coherent explanation of an agent’s behaviour that is aligned to the communication needs of the explainee. Reinforcement Learning (RL) methods, we propose, provide a potential backbone for the cognitive model required for the development of Broad-XAI. RL represents a suite of approaches that have had increasing success in solving a range of sequential decision-making problems. However, these algorithms operate as black-box problem solvers, where they obfuscate their decision-making policy through a complex array of values and functions. EXplainable RL (XRL) aims to develop techniques to extract concepts from the agent’s: perception of the environment; intrinsic/extrinsic motivations/beliefs; Q-values, goals and objectives. This paper aims to introduce the Causal XRL Framework (CXF), that unifies the current XRL research and uses RL as a backbone to the development of Broad-XAI. CXF is designed to incorporate many standard RL extensions and integrated with external ontologies and communication facilities so that the agent can answer questions that explain outcomes its decisions. This paper aims to: establish XRL as a distinct branch of XAI; introduce a conceptual framework for XRL; review existing approaches explaining agent behaviour; and identify opportunities for future research. Finally, this paper discusses how additional information can be extracted and ultimately integrated into models of communication, facilitating the development of Broad-XAI.