Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,102 result(s) for "Relativistic jets"
Sort by:
Mapping the Narrow-Line Seyfert 1 Galaxy 1H 0323+342
Taking advantage of the most recent measurements by means of high-resolution radio observations and other multiwavelength campaigns, it is possible to elaborate a detailed map of the narrow-line Seyfert 1 Galaxy 1H 0323 + 342 . This map will open the possibility of intriguing hypotheses about the generation of high-energy γ rays in the narrow-line region.
Is Jet Re-orientation the Elusive Trigger for Star Formation Suppression in Radio Galaxies?
Jet re-orientation associated with the time evolution of radio quasars explains the formation of X-shaped radio galaxies and their preference for isolated environments. But since X-shaped radio galaxies are generally not found in dense environments (e.g., groups/clusters), the jet re-orientation phenomenon for radio galaxies in groups and clusters has been ignored. We take a closer look at the re-orientation of FRI jets with respect to FRII jets, and find that it may constitute the as-yet unidentified trigger for star formation suppression in radio galaxies. We show how the recently explored radio “red geyser” galaxies can be interpreted in this context and ultimately reveal a deeper understanding of why FRII radio galaxies are on one side of the star formation enhancement/suppression divide compared to FRI radio galaxies.
Leptonic and Hadronic Radiative Processes in Supermassive-Black-Hole Jets
Supermassive black holes lying in the center of galaxies can launch relativistic jets of plasma along their polar axis. The physics of black-hole jets is a very active research topic in astrophysics, owing to the fact that many questions remain open on the physical mechanisms of jet launching, of particle acceleration in the jet, and on the radiative processes. In this work I focus on the last item, and present a review of the current understanding of radiative emission processes in supermassive-black-hole jets.
Key Science Goals for the Next-Generation Event Horizon Telescope
The Event Horizon Telescope (EHT) has led to the first images of a supermassive black hole, revealing the central compact objects in the elliptical galaxy M87 and the Milky Way. Proposed upgrades to this array through the next-generation EHT (ngEHT) program would sharply improve the angular resolution, dynamic range, and temporal coverage of the existing EHT observations. These improvements will uniquely enable a wealth of transformative new discoveries related to black hole science, extending from event-horizon-scale studies of strong gravity to studies of explosive transients to the cosmological growth and influence of supermassive black holes. Here, we present the key science goals for the ngEHT and their associated instrument requirements, both of which have been formulated through a multi-year international effort involving hundreds of scientists worldwide.
Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87
Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by the accretion of matter onto supermassive black holes. Although the measured width profiles of such jets on large scales agree with theories of magnetic collimation, the predicted structure on accretion disk scales at the jet launch point has not been detected. We report radio interferometry observations, at a wavelength of 1.3 millimeters, of the elliptical galaxy M87 that spatially resolve the base of the jet in this source. The derived size of 5.5 ± 0.4 Schwarzschild radii is significantly smaller than the innermost edge of a retrograde accretion disk, suggesting that the M87 jet is powered by an accretion disk in a prograde orbit around a spinning black hole.
Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes
Accreting black holes (BHs) produce intense radiation and powerful relativistic jets, which are affected by the BH's spin magnitude and direction. Although thin disks might align with the BH spin axis via the Bardeen-Petterson effect, this does not apply to jet systems with thick disks. We used fully three-dimensional general relativistic magnetohydrodynamical simulations to study accreting BHs with various spin vectors and disk thicknesses and with magnetic flux reaching saturation. Our simulations reveal a \"magneto-spin alignment\" mechanism that causes magnetized disks and jets to align with the BH spin near BHs and to reorient with the outer disk farther away. This mechanism has implications for the evolution of BH mass and spin, BH feedback on host galaxies, and resolved BH images for the accreting BHs in SgrA* and M87.
A Universal Scaling for the Energetics of Relativistic Jets from Black Hole Systems
Black holes generate collimated, relativistic jets, which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies [active galactic nuclei (AGN)]. How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGN is still unknown. Here, we show that jets produced by AGN and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGN and GRBs lying at the low- and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.
Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1
Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (∼3 to 20 solar masses, M ⊙ ) as well as supermassive black holes (∼10 6 to 10 9 M⊙) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (∼10 2 to 10 5 M ⊙ ), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between ∼9 × 10 3 M ⊙ and ∼9 × 10 4 M ⊙ .
Reference Array and Design Consideration for the Next-Generation Event Horizon Telescope
We describe the process to design, architect, and implement a transformative enhancement of the Event Horizon Telescope (EHT). This program—the next-generation Event Horizon Telescope (ngEHT)—will form a networked global array of radio dishes capable of making high-fidelity real-time movies of supermassive black holes (SMBH) and their emanating jets. This builds upon the EHT principally by deploying additional modest-diameter dishes to optimized geographic locations to enhance the current global mm/submm wavelength Very Long Baseline Interferometric (VLBI) array, which has, to date, utilized mostly pre-existing radio telescopes. The ngEHT program further focuses on observing at three frequencies simultaneously for increased sensitivity and Fourier spatial frequency coverage. Here, the concept, science goals, design considerations, station siting, and instrument prototyping are discussed, and a preliminary reference array to be implemented in phases is described.
Radio Imaging of the Very-High-Energy γ-Ray Emission Region in the Central Engine of a Radio Galaxy
The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10¹² electron volts and are bright sources of very-high-energy (VHE) γ-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE γ-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.