Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
96 result(s) for "Relaxed Molecular Clock"
Sort by:
smaller Macadamia from a more vagile tribe: inference of phylogenetic relationships, divergence times, and diaspore evolution in Macadamia and relatives (tribe Macadamieae; Proteaceae)
Tribe Macadamieae (91 spp., 16 genera; Proteaceae) is widespread across the southern hemisphere on all major fragments of Gondwana except New Zealand and India. Macadamia is cultivated outside its natural range as a \"nut\" crop (notably in Hawaii, where it is the principal orchard crop). We sampled seven DNA regions and 53 morphological characters from the tribe to infer its phylogeny and address the common assumption that the distribution of the extant diversity of the tribe arose by the rafting of ancestors on Gondwanan fragments. Macadamia proves to be paraphyletic with respect to the African genus Brabejum, the South American genus Panopsis, and the Australian species Orites megacarpus. We erect two new generic names, Nothorites and Lasjia, to produce monophyly at that rank. The earliest disjunctions in the tribe are inferred to be the result of long-distance dispersal out of Australia (with one possible exception), rather than vicariance. Evolution of tardy fruit dehiscence is correlated with these dispersals, and the onset of the Antarctic Circumpolar Current (ACC) precedes them. We suggest that the ancestors of extant diversity arrived on their respective continents via the ACC, and we recognize that this is a mechanism precluded, rather than facilitated, by Gondwana's terrestrial continuity.
Early photosynthetic eukaryotes inhabited low-salinity habitats
The early evolutionary history of the chloroplast lineage remains an open question. It is widely accepted that the endosymbiosis that established the chloroplast lineage in eukaryotes can be traced back to a single event, in which a cyanobacterium was incorporated into a protistan host. It is still unclear, however, which Cyanobacteria are most closely related to the chloroplast, when the plastid lineage first evolved, and in what habitats this endosymbiotic event occurred. We present phylogenomic and molecular clock analyses, including data from cyanobacterial and chloroplast genomes using a Bayesian approach, with the aim of estimating the age for the primary endosymbiotic event, the ages of crown groups for photosynthetic eukaryotes, and the independent incorporation of a cyanobacterial endosymbiont by Paulinella. Our analyses include both broad taxon sampling (119 taxa) and 18 fossil calibrations across all Cyanobacteria and photosynthetic eukaryotes. Phylogenomic analyses support the hypothesis that the chloroplast lineage diverged from its closet relative Gloeomargarita, a basal cyanobacterial lineage, ∼2.1 billion y ago (Bya). Our analyses suggest that the Archaeplastida, consisting of glaucophytes, red algae, green algae, and land plants, share a common ancestor that lived ∼1.9 Bya. Whereas crown group Rhodophyta evolved in the Mesoproterozoic Era (1,600–1,000 Mya), crown groups Chlorophyta and Streptophyta began to radiate early in the Neoproterozoic (1,000–542 Mya). Stochastic mapping analyses indicate that the first endosymbiotic event occurred in low-salinity environments. Both red and green algae colonized marine environments early in their histories, with prasinophyte green phytoplankton diversifying 850–650 Mya.
A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity
The establishment of modern terrestrial life is indissociable from angiosperm evolution. While available molecular clock estimates of angiosperm age range from the Paleozoic to the Late Cretaceous, the fossil record is consistent with angiosperm diversification in the Early Cretaceous. The time-frame of angiosperm evolution is here estimated using a sample representing 87% of families and sequences of five plastid and nuclear markers, implementing penalized likelihood and Bayesian relaxed clocks. A literature-based review of the palaeontological record yielded calibrations for 137 phylogenetic nodes. The angiosperm crown age was bound within a confidence interval calculated with a method that considers the fossil record of the group. An Early Cretaceous crown angiosperm age was estimated with high confidence. Magnoliidae, Monocotyledoneae and Eudicotyledoneae diversified synchronously 135–130 million yr ago (Ma); Pentapetalae is 126–121 Ma; and Rosidae (123–115 Ma) preceded Asteridae (119–110 Ma). Family stem ages are continuously distributed between c. 140 and 20 Ma. This time-frame documents an early phylogenetic proliferation that led to the establishment of major angiosperm lineages, and the origin of over half of extant families, in the Cretaceous. While substantial amounts of angiosperm morphological and functional diversity have deep evolutionary roots, extant species richness was probably acquired later.
Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans
Xenarthra (armadillos, sloths, and anteaters) constitutes one of the four major clades of placental mammals. Despite their phylogenetic distinctiveness in mammals, a reference phylogeny is still lacking for the 31 described species. Here we used Illumina shotgun sequencing to assemble 33 new complete mitochondrial genomes, establishing Xenarthra as the first major placental clade to be fully sequenced at the species level for mitogenomes. The resulting data set allowed the reconstruction of a robust phylogenetic framework and timescale that are consistent with previous studies conducted at the genus level using nuclear genes. Incorporating the full species diversity of extant xenarthrans points to a number of inconsistencies in xenarthran systematics and species definition. We propose to split armadillos into two distinct families Dasypodidae (dasypodines) and Chlamyphoridae (euphractines, chlamyphorines, and tolypeutines) to better reflect their ancient divergence, estimated around 42 Ma. Species delimitation within long-nosed armadillos (genus Dasypus) appeared more complex than anticipated, with the discovery of a divergent lineage in French Guiana. Diversification analyses showed Xenarthra to be an ancient clade with a constant diversification rate through time with a species turnover driven by high but constant extinction. We also detected a significant negative correlation between speciation rate and past temperature fluctuations with an increase in speciation rate corresponding to the general cooling observed during the last 15 My. Biogeographic reconstructions identified the tropical rainforest biome of Amazonia and the Guiana Shield as the cradle of xenarthran evolutionary history with subsequent dispersions into more open and dry habitats.
Testing the Impact of Calibration on Molecular Divergence Times Using a Fossil-Rich Group: The Case of Nothofagus (Fagales)
Although temporal calibration is widely recognized as critical for obtaining accurate divergence-time estimates using molecular dating methods, few studies have evaluated the variation resulting from different calibration strategies. Depending on the information available, researchers have often used primary calibrations from the fossil record or secondary calibrations from previous molecular dating studies. In analyses of flowering plants, primary calibration data can be obtained from macro- and mesofossils (e.g., leaves, flowers, and fruits) or microfossils (e.g., pollen). Fossil data can vary substantially in accuracy and precision, presenting a difficult choice when selecting appropriate calibrations. Here, we test the impact of eight plausible calibration scenarios for Nothofagus (Nothofagaceae, Fagales), a plant genus with a particularly rich and well-studied fossil record. To do so, we reviewed the phylogenetic placement and geochronology of 38 fossil taxa of Nothofagus and other Fagales, and we identified minimum age constraints for up to 18 nodes of the phylogeny of Fagales. Molecular dating analyses were conducted for each scenario using maximum likelihood (RAxML + r8s) and Bayesian (BEAST) approaches on sequence data from six regions of the chloroplast and nuclear genomes. Using either ingroup or outgroup constraints, or both, led to similar age estimates, except near strongly influential calibration nodes. Using \"early but risky\" fossil constraints in addition to \"safe but late\" constraints, or using assumptions of vicariance instead of fossil constraints, led to older age estimates. In contrast, using secondary calibration points yielded drastically younger age estimates. This empirical study highlights the critical influence of calibration on molecular dating analyses. Even in a best-case situation, with many thoroughly vetted fossils available, substantial uncertainties can remain in the estimates of divergence times. For example, our estimates for the crown group age of Nothofagus varied from 13 to 113 Ma across our full range of calibration scenarios. We suggest that increased background research should be made at all stages of the calibration process to reduce errors wherever possible, from verifying the geochronological data on the fossils to critical reassessment of their phylogenetic position.
Incorrect handling of calibration information in divergence time inference: an example from volcanic islands
Divergence time studies rely on calibration information from several sources. The age of volcanic islands is one of the standard references to obtain chronological data to estimate the absolute times of lineage diversifications. This strategy assumes that cladogenesis is necessarily associated with island formation, and punctual calibrations are commonly used to date the splits of endemic island species. Here, we re‐examined three studies that inferred divergence times for different Hawaiian lineages assuming fixed calibration points. We show that, by permitting probabilistic calibrations, some divergences are estimated to be significantly younger or older than the age of the island formation, thus yielding distinct ecological scenarios for the speciation process. The results highlight the importance of using calibration information correctly, as well as the possibility of incorporating volcanic island studies into a formal, biogeographical hypothesis‐testing framework. “We show that, by permitting probabilistic calibrations on volcanic islands, divergences are found to be significantly younger or older than the age of the island formation, thus yielding distinct ecological scenarios for the speciation process. The results highlight the importance of using calibration information correctly, as well as the possibility of incorporating volcanic island studies into a formal, biogeographical hypothesis‐testing framework. We hereby declare that the authors have no conflict of interest.”
Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction
Insects are a highly diverse group of organisms and constitute more than half of all known animal species. They have evolved an extraordinary range of traits, from flight and complete metamorphosis to complex polyphenisms and advanced eusociality. Although the rich insect fossil record has helped to chart the appearance of many phenotypic innovations, data are scarce for a number of key periods. One such period is that following the End-Permian Extinction, recognized as the most catastrophic of all extinction events. We recently discovered several 240-million-year-old insect fossils in the Mount San Giorgio Lagerstätte (Switzerland–Italy) that are remarkable for their state of preservation (including internal organs and soft tissues), and because they extend the records of their respective taxa by up to 200 million years. By using these fossils as calibrations in a phylogenomic dating analysis, we present a revised time scale for insect evolution. Our date estimates for several major lineages, including the hyperdiverse crown groups of Lepidoptera, Hemiptera: Heteroptera and Diptera, are substantially older than their currently accepted post-Permian origins. We found that major evolutionary innovations, including flight and metamorphosis, appeared considerably earlier than previously thought. These results have numerous implications for understanding the evolution of insects and their resilience in the face of extreme events such as the End-Permian Extinction.
Bayesian Phylogenetic Estimation of Clade Ages Supports Trans-Atlantic Dispersal of Cichlid Fishes
Divergence-time estimation based on molecular phylogenies and the fossil record has provided insights into fundamental questions of evolutionary biology. In Bayesian node dating, phylogenies are commonly time calibrated through the specification of calibration densities on nodes representing clades with known fossil occurrences. Unfortunately, the optimal shape of these calibration densities is usually unknown and they are therefore often chosen arbitrarily, which directly impacts the reliability of the resulting age estimates. As possible solutions to this problem, two nonexclusive alternative approaches have recently been developed, the \"fossilized birth–death\" (FBD) model and \"total-evidence dating.\" While these approaches have been shown to perform well under certain conditions, they require including all (or a random subset) of the fossils of each clade in the analysis, rather than just relying on the oldest fossils of clades. In addition, both approaches assume that fossil records of different clades in the phylogeny are all the product of the same underlying fossil sampling rate, even though this rate has been shown to differ strongly between higher level taxa. We here develop a flexible new approach to Bayesian age estimation that combines advantages of node dating and the FBD model. In our new approach, calibration densities are defined on the basis of first fossil occurrences and sampling rate estimates that can be specified separately for all clades. We verify our approach with a large number of simulated data sets, and compare its performance to that of the FBD model. We find that our approach produces reliable age estimates that are robust to model violation, on par with the FBD model. By applying our approach to a large data set including sequence data from over 1000 species of teleost fishes as well as 147 carefully selected fossil constraints, we recover a timeline of teleost diversification that is incompatible with previously assumed vicariant divergences of freshwater fishes. Our results instead provide strong evidence for transoceanic dispersal of cichlids and other groups of teleost fishes.
TESTING FOR ANCIENT ADAPTIVE RADIATIONS IN NEOTROPICAL CICHLID FISHES
Most contemporary studies of adaptive radiation focus on relatively recent and geographically restricted clades. It is less clear whether diversification of ancient clades spanning entire continents is consistent with adaptive radiation. We used novel fossil calibrations to generate a chronogram of Neotropical cichlid fishes and to test whether patterns of lineage and morphological diversification are congruent with hypothesized adaptive radiations in South and Central America. We found that diversification in the Neotropical cichlid clade and the highly diverse tribe Geophagini was consistent with diversity-dependent, early bursts of divergence followed by decreased rates of lineage accumulation. South American Geophagini underwent early rapid differentiation in body shape, expanding into novel morphological space characterized by elongate-bodied predators. Divergence in head shape attributes associated with trophic specialization evolved under strong adaptive constraints in all Neotropical cichlid clades. The South American Cichlasomatini followed patterns consistent with constant rates of morphological divergence. Although morphological diversification in South American Heroini was limited, Eocene invasion of Central American habitats was followed by convergent diversification mirroring variation observed in Geophagini. Diversification in Neotropical cichlids was influenced by the early adaptive radiation of Geophagini, which potentially limited differentiation in other cichlid clades.
Model-Based Inference of Punctuated Molecular Evolution
In standard models of molecular evolution, DNA sequences evolve through asynchronous substitutions according to Poisson processes with a constant rate (called the molecular clock) or a rate that can vary (relaxed clock). However, DNA sequences can also undergo episodes of fast divergence that will appear as synchronous substitutions affecting several sites simultaneously at the macroevolutionary timescale. Here, we develop a model, which we call the Relaxed Clock with Spikes model, combining basal, clock-like molecular substitutions with episodes of fast divergence called spikes arising at speciation events. Given a multiple sequence alignment and its time-calibrated species phylogeny, our model is able to detect speciation events (including hidden ones) cooccurring with spike events and to estimate the probability and amplitude of these spikes on the phylogeny. We identify the conditions under which spikes can be distinguished from the natural variance of the clock-like component of molecular substitutions and from variations of the clock. We apply the method to genes underlying snake venom proteins and identify several spikes at gene-specific locations in the phylogeny. This work should pave the way for analyses relying on whole genomes to inform on modes of species diversification.