Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
271
result(s) for
"Remote ischemic preconditioning"
Sort by:
Effects of remote ischemic preconditioning (RIPC) and chronic remote ischemic preconditioning (cRIPC) on levels of plasma cytokines, cell surface characteristics of monocytes and in-vitro angiogenesis: a pilot study
2021
Remote ischemic preconditioning (RIPC) protects the heart against myocardial ischemia/reperfusion (I/R) injury and recent work also suggested chronic remote ischemic conditioning (cRIPC) for cardiovascular protection. Based on current knowledge that systemic immunomodulatory effects of RIPC and the anti-inflammatory capacity of monocytes might be involved in cardiovascular protection, the aim of our study was to evaluate whether RIPC/cRIPC blood plasma is able to induce in-vitro angiogenesis, identify responsible factors and evaluate the effects of RIPC/cRIPC on cell surface characteristics of circulating monocytes. Eleven healthy volunteers were subjected to RIPC/cRIPC using a blood pressure cuff inflated to > 200 mmHg for 3 × 5 min on the upper arm. Plasma and peripheral blood monocytes were isolated before RIPC (Control), after 1 × RIPC (RIPC) and at the end of 1 week of daily RIPC (cRIPC) treatment. Plasma concentrations of potentially pro-angiogenic humoral factors (CXCL5, Growth hormone, IGFBP3, IL-1α, IL-6, Angiopoietin 2, VEGF, PECAM-1, sTie-2, IL-8, MCSF) were measured using custom made multiplex ELISA systems. Tube formation assays for evaluation of in-vitro angiogenesis were performed with donor plasma, monocyte conditioned culture media as well as IL-1α, CXCL5 and Growth hormone. The presence of CD14, CD16, Tie-2 and CCR2 was analyzed on monocytes by flow cytometry. Employing in-vitro tube formation assays, several parameters of angiogenesis were significantly increased by cRIPC plasma (number of nodes, P < 0.05; number of master junctions, P < 0.05; number of segments, P < 0.05) but were not influenced by culture medium from RIPC/cRIPC treated monocytes. While RIPC/cRIPC treatment did not lead to significant changes of the median plasma concentrations of any of the selected potentially pro-angiogenic humoral factors, in-depth analysis of the individual subjects revealed differences in plasma levels of IL-1α, CXCL5 and Growth hormone after RIPC/cRIPC treatment in some of the volunteers. Nevertheless, the positive effects of RIPC/cRIPC plasma on in-vitro angiogenesis could not be mimicked by the addition of the respective humoral factors alone or in combination. While monocyte conditioned culture media did not affect in-vitro tube formation, flow cytometry analyses of circulating monocytes revealed a significant increase in the number of Tie-2 positive and a decrease of CCR2 positive monocytes after RIPC/cRIPC (Tie-2: cRIPC, P < 0.05; CCR2: RIPC P < 0.01). Cardiovascular protection may be mediated by RIPC and cRIPC via a regulation of plasma cytokines as well as changes in cell surface characteristics of monocytes (e.g. Tie-2). Our results suggest that a combination of humoral and cellular factors could be responsible for the RIPC/cRIPC mediated effects and that interindividual variations seem to play a considerable part in the RIPC/cRIPC associated mechanisms.
Journal Article
Investigating the role of acute and repeated stress on remote ischemic preconditioning-induced cardioprotection
by
Tyagi, Sakshi
,
Kaur, Simranjot
,
Jaggi, Amteshwar Singh
in
acute stress
,
adaptation
,
Adenosine
2020
To study the effect of acute and repeated stress on cardioprotection-induced by remote ischemic preconditioning (RIPC).
RIPC was induced by giving 4 short cycles of ischemia and reperfusion, each consisting of five min. The Langendorff's apparatus was used to perfuse the isolated rat hearts by subjecting the hearts to global ischemia of 30 min and reperfusion of 120 min. The coronary effluent was collected to measure the levels of lactate dehydrogenase (LDH) and creatine kinase (CK) for the assessment of injury to the myocardium. Myocardial infarct size was measured by the use of triphenyl tetrazolium chloride. Acute stress was induced by subjecting the animals to cold immersion stress for 5 min. However, in the case of stress adaptation, rats were exposed to a homotypic stressor (cold-water immersion stress) each of 5 min duration for five consecutive days.
RIPC demonstrated a significant decrease in ischemia-reperfusion-induced myocardial injury in terms of decrease in LDH, CK, and infarct size. However, acute stress for five minutes prior to RIPC significantly abolished its cardioprotective effects. Exogenous administration of adenosine restored RIPC-induced cardioprotective effects in the presence of acute stress. On repeated stress exposure for 5 days, stress adaptation was noted, and there was no effect of repeated stress exposure on RIPC-induced cardioprotection. However, the cardioprotective effects of adenosine were absent in the case of rats subjected to repeated episodes of stress.
Acute stress, but not repeated stress exposure, may alter the release of adenosine during RIPC, which may be manifested in the form of reduced cardioprotection during ischemic-reperfusion injury.
Journal Article
Ischemic Conditioning Is Safe and Effective for Octo- and Nonagenarians in Stroke Prevention and Treatment
by
Duan, Yunxia
,
Meng, Ran
,
Yu, Yang
in
Aged, 80 and over
,
Arm - blood supply
,
Biomedical and Life Sciences
2015
Symptomatic intracranial arterial stenosis (SIAS) is very common in octo- and nonagenarians, especially in the Chinese population, and is likely the most common cause of stroke recurrence worldwide. Clinical trials demonstrate that endovascular treatment, such as stenting, may not be suitable for octogenarians with systemic diseases. Hence, less invasive methods for the octogenarian patients are urgently needed. Our previous study (unique identifier: NCT01321749) showed that repetitive bilateral arm ischemic preconditioning (BAIPC) reduced the incidence of stroke recurrence by improving cerebral perfusion (confirmed by single photon emission computed tomography and transcranial Doppler sonography) in patients younger than 80 years of age; however, the safety and effectiveness of BAIPC on stroke prevention in octo- and nonagenarians with SIAS are still unclear. The objective of this study was to evaluate the safety and effectiveness of BAIPC in reducing stroke recurrence in octo- and nonagenarian patients with SIAS. Fifty-eight patients with SIAS were enrolled in this randomized controlled prospective study for 180 consecutive days. All patients enrolled in the study received standard medical management. Patients in the BAIPC group (n = 30) underwent 5 cycles consisting of bilateral arm ischemia followed by reperfusion for 5 min each twice daily. Those in the control group (n = 28) underwent sham-BAIPC twice daily. Blood pressure, heart rate, local skin status, plasma myoglobin, and plasma levels of thrombotic and inflammatory markers were documented in both groups before beginning the study and for the first 30 days. Finally, the incidences of stroke recurrence and magnetic resonance imaging during the 180 days of treatment were compared. Compared with the control, BAIPC had no adverse effects on blood pressure, heart rate, local skin integrity, or plasma myoglobin, and did not induce cerebral hemorrhage in the studied cohort. BAIPC reduced plasma high sensitive C-reactive protein, interleukin-6, plasminogen activator inhibitor-1, leukocyte count, and platelet aggregation rate and elevated plasma tissue plasminogen activator (all p < 0.01). In 180 days, 2 infarctions and 7 transient ischemic attacks were observed in the BAIPC group compared with 8 infarctions and 11 transient ischemic attacks in the sham BAIPC group (p < 0.05). BAIPC may safely inhibit stroke recurrence, protect against brain ischemia, and ameliorate plasma biomarkers of inflammation and coagulation in octo- and nonagenarians with SIAS. A multicenter trial is ongoing.
Clinical Trial Registration: www.clinicaltrials.gov, unique identifier: NCT01570231.
Journal Article
Remote ischemic preconditioning reduces myocardial ischemia–reperfusion injury through unacylated ghrelin-induced activation of the JAK/STAT pathway
2020
Remote ischemic preconditioning (RIPC) offers cardioprotection against myocardial ischemia–reperfusion injury. The humoral factors involved in RIPC that are released from parasympathetically innervated organs have not been identified. Previous studies showed that ghrelin, a hormone released from the stomach, is associated with cardioprotection. However, it is unknown whether or not ghrelin is involved in the mechanism of RIPC. This study aimed to determine whether ghrelin serves as one of the humoral factors in RIPC. RIPC group rats were subjected to three cycles of ischemia and reperfusion for 5 min in two limbs before left anterior descending (LAD) coronary artery ligation. Unacylated ghrelin (UAG) group rats were given 0.5 mcg/kg UAG intravenously 30 min before LAD ligation. Plasma levels of UAG in all groups were measured before and after RIPC procedures and UAG administration. Additionally, JAK2/STAT3 pathway inhibitor (AG490) was injected in RIPC and UAG groups to investigate abolishment of the cardioprotection of RIPC and UAG. Plasma levels of UAG, infarct size and phosphorylation of STAT3 were compared in all groups. Infarct size was significantly reduced in RIPC and UAG groups, compared to the other groups. Plasma levels of UAG in RIPC and UAG groups were significantly increased after RIPC and UAG administration, respectively. The cardioprotective effects of RIPC and UAG were accompanied by an increase in phosphorylation of STAT3 and abolished by AG490. This study indicated that RIPC reduces myocardial ischemia and reperfusion injury through UAG-induced activation of JAK/STAT pathway. UAG may be one of the humoral factors involved in the cardioprotective effects of RIPC.
Journal Article
MicroRNA-144 is a circulating effector of remote ischemic preconditioning
by
Gladstone, Rachel A.
,
Hu, Pingzhao
,
Redington, Andrew N.
in
Animals
,
Blotting, Western
,
Cardiology
2014
Remote ischemic preconditioning (rIPC) induced by cycles of transient limb ischemia and reperfusion is a powerful cardioprotective strategy with additional pleiotropic effects. However, our understanding of its underlying mediators and mechanisms remains incomplete. We examined the role of miR-144 in the cardioprotection induced by rIPC. Microarray studies first established that rIPC increases, and IR injury decreases miR-144 levels in mouse myocardium, the latter being rescued by both rIPC and intravenous administration of miR-144. Going along with this systemic treatment with miR-144 increased P-Akt, P-GSK3β and P-p44/42 MAPK, decreased p-mTOR level and induced autophagy signaling, and induced early and delayed cardioprotection with improved functional recovery and reduction in infarct size similar to that achieved by rIPC. Conversely, systemic administration of a specific antisense oligonucleotide reduced myocardial levels of miR-144 and abrogated cardioprotection by rIPC. We then showed that rIPC increases plasma miR-144 levels in mice and humans, but there was no change in plasma microparticle (50–400 nM) numbers or their miR-144 content. However, there was an almost fourfold increase in miR-144 precursor in the exosome pellet, and a significant increase in miR-144 levels in exosome-poor serum which, in turn, was associated with increased levels of the miR carriage protein Argonaute-2. Systemic release of microRNA 144 plays a pivotal role in the cardioprotection induced by rIPC. Future studies should assess the potential for plasma miR-144 as a biomarker of the effectiveness of rIPC induced by limb ischemia, and whether miR-144 itself may represent a novel therapy to reduce clinical ischemia–reperfusion injury.
Journal Article
Preactivation of Notch1 in remote ischemic preconditioning reduces cerebral ischemia-reperfusion injury through crosstalk with the NF-κB pathway
2019
Background
Remote ischemic preconditioning (RIPC) initiates endogenous protective pathways in the brain from a distance and represents a new, promising paradigm in neuroprotection against cerebral ischemia-reperfusion (I/R) injury. However, the underlying mechanism of RIPC-mediated cerebral ischemia tolerance is complicated and not well understood. We reported previously that preactivation of Notch1 mediated the neuroprotective effects of cerebral ischemic preconditioning in rats subjected to cerebral I/R injury. The present study seeks to further explore the role of crosstalk between the Notch1 and NF-κB signaling pathways in the process of RIPC-induced neuroprotection.
Methods
Middle cerebral artery occlusion and reperfusion (MCAO/R) in adult male rats and oxygen-glucose deprivation and reoxygenation (OGD/R) in primary hippocampal neurons were used as models of I/R injury in vivo and in vitro, respectively. RIPC was induced by a 3-day procedure with 4 cycles of 5 min of left hind limb ischemia followed by 5 min of reperfusion each day before MCAO/R. Intracerebroventricular DAPT injection and sh-Notch1 lentivirus interference were used to inhibit the Notch1 signaling pathway in vivo and in vitro, respectively. After 24 h of reperfusion, neurological deficit scores, infarct volume, neuronal apoptosis, and cell viability were assessed. The protein expression levels of NICD, Hes1, Phospho-IKKα/β (p-IKK α/β), Phospho-NF-κB p65 (p-NF-κB p65), Bcl-2, and Bax were assessed by Western blotting.
Results
RIPC significantly improved neurological scores and reduced infarct volume and neuronal apoptosis in rats subjected to I/R injury. OGD preconditioning significantly reduced neuronal apoptosis and improved cell viability after I/R injury on days 3 and 7 after OGD/R. However, the neuroprotective effect was reversed by DAPT in vivo and attenuated by Notch1-RNAi in vitro. RIPC significantly upregulated the expression of proteins related to the Notch1 and NF-κB pathways. NF-κB signaling pathway activity was suppressed by a Notch1 signaling pathway inhibitor and Notch1-RNAi.
Conclusions
The neuroprotective effect of RIPC against cerebral I/R injury was associated with preactivation of the Notch1 and NF-κB pathways in neurons. The NF-κB pathway is a downstream target of the Notch1 pathway in RIPC and helps protect focal cerebral I/R injury.
Journal Article
Seven-Day Remote Ischemic Preconditioning Improves Local and Systemic Endothelial Function and Microcirculation in Healthy Humans
by
Jones, Helen
,
Bailey, Tom G.
,
Thijssen, Dick H.J.
in
Brachial Artery - physiology
,
Endothelium, Vascular - physiology
,
Forearm - blood supply
2014
BACKGROUND
Ischemic preconditioning (IPC) protects tissue against ischemia-induced injury inside and outside ischemic areas. The purpose was to examine the hypothesis that daily IPC leads to improvement in endothelial function and skin microcirculation not only in the arm exposed to IPC but also in the contralateral arm.
METHODS
Thirteen healthy, young, normotensive male individuals (aged 22±2 years) were assigned to 7-day daily exposure of the arm to IPC (4×5 minutes). Assessment of brachial artery endothelial function (using flow-mediated dilation (FMD)) and forearm microcirculation (cutaneous vascular conductance (CVC) at baseline and during local heating) was performed before and after 7 days to examine the local (i.e., intervention arm) and remote (i.e., control arm) effect of IPC. We repeated the assessment tests 8 days after the intervention (Post+8).
RESULTS
FMD increased after repeated IPC (P = 0.03) and remained significantly elevated at Post+8 in the intervention (5.0±2.2%, 6.1±2.2%, and 6.6±2.3%) and contralateral arms (5.4±2.2%, 6.0±2.2%, and 7.5±2.2%). Forearm CVC also increased following repeated IPC (P = 0.006) and remained elevated at Post+8 in both arms (intervention: 0.12±0.03, 0.14±0.04, 0.16±0.04 mV/mm Hg; contralateral: 0.14±0.04, 0.015±0.04, 0.17±0.07). No interaction between IPC arm and time was evident for FMD and CVC (both P > 0.05). IPC intervention did not alter CVC responses to local heating (P > 0.05).
CONCLUSIONS
Daily exposure to IPC for 7 days leads to local and remote improvements in brachial artery FMD and resting skin microcirculation that remain after cessation of the intervention and beyond the late phase of protection. These findings may have clinical relevance for micro- and macrovascular improvements.
Journal Article
Myocardial remote ischemic preconditioning: from cell biology to clinical application
by
Gelpi, Ricardo J
,
Bin, Eliana P
,
D´Annunzio Verónica
in
Clinical trials
,
Heterogeneity
,
Intracellular signalling
2021
Remote ischemic preconditioning (rIPC) is a cardioprotective phenomenon where brief periods of ischemia followed by reperfusion of one organ/tissue can confer subsequent protection against ischemia/reperfusion injury in other organs, such as the heart. It involves activation of humoral, neural or systemic communication pathways inducing different intracellular signals in the heart. The main purpose of this review is to summarize the possible mechanisms involved in the rIPC cardioprotection, and to describe recent clinical trials to establish the efficacy of these strategies in cardioprotection from lethal ischemia/reperfusion injury. In this sense, certain factors weaken the subcellular mechanisms of rIPC in patients, such as age, comorbidities, medication, and anesthetic protocol, which could explain the heterogeneity of results in some clinical trials. For these reasons, further studies, carefully designed, are necessary to develop a clearer understanding of the pathways and mechanism of early and late rIPC. An understanding of the pathways is important for translation to patients.
Journal Article
Remote Ischemic Preconditioning Attenuates Mitochondrial Dysfunction and Ferroptosis of Tubular Epithelial Cells by Inhibiting NOX4-ROS Signaling in Acute Kidney Injury
by
Ma, Liang
,
Yang, Letian
,
Tang, Lei
in
Acute Kidney Injury - metabolism
,
Acute Kidney Injury - therapy
,
Animals
2025
Acute kidney injury (AKI) is a worldwide clinical burden associated with high morbidity and mortality. Remote ischemic preconditioning (rIPC), a brief nonlethal ischemia and reperfusion (IR) in remote tissues or limbs, has been used in an attempt to protect against AKI, but its underlying signaling pathways has not been elucidated. In the present study, rIPC protected kidney function and pathological injury and mitigated NADPH oxidase 4 (NOX4) upregulation in different AKI models (cisplatin, LPS and IRI). Furthermore, rIPC significantly attenuated mitochondrial dysfunction and ameliorated tubular epithelial ferroptosis during AKI. Mechanistically, in wild-type AKI mice and TCMK-1 cells, rIPC effectively decreased kidney ROS production, preserved mitochondrial dynamics and mitophagy, and ameliorated tubular epithelial ferroptosis. Notably, these protective effects of rIPC were further enhanced by NOX4 knockout or silencing and mitigated by NOX4 overexpression. Our study showed that rIPC may attenuate mitochondrial dysfunction and ferroptosis in tubular epithelial cells in AKI by inhibiting NOX4-ROS signaling. NOX4 might be used as a biomarker for monitoring the biological effects of rIPC to optimize the rIPC protocol and facilitate future translational studies.
Journal Article
Remote ischemic conditioning for acute ischemic stroke: dawn in the darkness
by
Pan, Jingrui
,
Li, Xiangpen
,
Peng, Ying
in
Animals
,
Brain - physiopathology
,
Brain Ischemia - therapy
2016
Stroke is a leading cause of disability with high morbidity and mortality worldwide. Of all strokes, 87% are ischemic. The only approved treatments for acute ischemic stroke are intravenous thrombolysis with alteplase within 4.5 h and thrombectomy within 8 h after symptom onset, which can be applied to just a few patients. During the past decades, ischemic preconditioning has been widely studied to confirm its neuroprotection against subsequent ischemia/reperfusion injury in the brain, including preconditioning
or in a remote organ (such as a limb) before onset of brain ischemia, the latter of which is termed as remote ischemic preconditioning. Because acute stroke is unpredicted, ischemic preconditioning is actually not suitable for clinical application. So remote ischemic conditioning performed during or after the ischemic duration of the brain was then designed to study its neuroprotection alone or in combination with alteplase in animals and patients, which is named as remote ischemic perconditioning or remote ischemic postconditioning. As expected, animal experiments and clinical trials both showed exciting results, indicating that an evolution in the treatment for acute ischemic stroke may not be far away. However, some problems or disputes still exist. This review summarizes the research progress and unresolved issues of remote ischemic conditioning (pre-, per-, and post-conditioning) in treating acute ischemic stroke, with the hope of advancing our understanding of this promising neuroprotective strategy for ischemic stroke in the near future.
Journal Article