Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
18,939
result(s) for
"Replication Protein A - genetics"
Sort by:
SETD2-mediated H3K14 trimethylation promotes ATR activation and stalled replication fork restart in response to DNA replication stress
2021
Ataxia telangiectasia and Rad3 related (ATR) activation after replication stress involves a cascade of reactions, including replication protein A (RPA) complex loading onto single-stranded DNA and ATR activator loading onto chromatin. The contribution of histone modifications to ATR activation, however, is unclear. Here, we report that H3K14 trimethylation responds to replication stress by enhancing ATR activation. First, we confirmed that H3K14 monomethylation, dimethylation, and trimethylation all exist in mammalian cells, and that both SUV39H1 and SETD2 methyltransferases can catalyze H3K14 trimethylation in vivo and in vitro. Interestingly, SETD2-mediated H3K14 trimethylation markedly increases in response to replication stress induced with hydroxyurea, a replication stress inducer. Under these conditions, SETD2-mediated H3K14me3 recruited the RPA complex to chromatin via a direct interaction with RPA70. The increase in H3K14me3 levels was abolished, and RPA loading was attenuated when SETD2 was depleted or H3K14 was mutated. Rather, the cells were sensitive to replication stress such that the replication forks failed to restart, and cell-cycle progression was delayed. These findings help us understand how H3K14 trimethylation links replication stress with ATR activation.
Journal Article
Dual functions for the ssDNA-binding protein RPA in meiotic recombination
2019
Meiotic recombination permits exchange of genetic material between homologous chromosomes. The replication protein A (RPA) complex, the predominant ssDNA-binding complex, is required for nearly all aspects of DNA metabolism, but its role in mammalian meiotic recombination remains unknown due to the embryonic lethality of RPA mutant mice. RPA is a heterotrimer of RPA1, RPA2, and RPA3. We find that loss of RPA1, the largest subunit, leads to disappearance of RPA2 and RPA3, resulting in the absence of the RPA complex. Using an inducible germline-specific inactivation strategy, we find that loss of RPA completely abrogates loading of RAD51/DMC1 recombinases to programmed meiotic DNA double strand breaks, thus blocking strand invasion required for chromosome pairing and synapsis. Surprisingly, loading of MEIOB, SPATA22, and ATR to DNA double strand breaks is RPA-independent and does not promote RAD51/DMC1 recruitment in the absence of RPA. Finally, inactivation of RPA reduces crossover formation. Our results demonstrate that RPA plays two distinct roles in meiotic recombination: an essential role in recombinase recruitment at early stages and an important role in promoting crossover formation at later stages.
Journal Article
Concentration-Dependent Exchange of Replication Protein A on Single-Stranded DNA Revealed by Single-Molecule Imaging
by
Gergoudis, Stephanie C.
,
Kwon, YoungHo
,
Sung, Patrick
in
Adenosine Triphosphate - metabolism
,
Binding
,
Binding proteins
2014
Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein necessary for all aspects of DNA metabolism involving an ssDNA intermediate, including DNA replication, repair, recombination, DNA damage response and checkpoint activation, and telomere maintenance. The role of RPA in most of these reactions is to protect the ssDNA until it can be delivered to downstream enzymes. Therefore a crucial feature of RPA is that it must bind very tightly to ssDNA, but must also be easily displaced from ssDNA to allow other proteins to gain access to the substrate. Here we use total internal reflection fluorescence microscopy and nanofabricated DNA curtains to visualize the behavior of Saccharomyces cerevisiae RPA on individual strands of ssDNA in real-time. Our results show that RPA remains bound to ssDNA for long periods of time when free protein is absent from solution. In contrast, RPA rapidly dissociates from ssDNA when free RPA is present in solution allowing rapid exchange between the free and bound states. In addition, the S. cerevisiae DNA recombinase Rad51 and E. coli single-stranded binding protein (SSB) also promote removal of RPA from ssDNA. These results reveal an unanticipated exchange between bound and free RPA suggesting a binding mechanism that can confer exceptionally slow off rates, yet also enables rapid displacement through a direct exchange mechanism that is reliant upon the presence of free ssDNA-binding proteins in solution. Our results indicate that RPA undergoes constant microscopic dissociation under all conditions, but this is only manifested as macroscopic dissociation (i.e. exchange) when free proteins are present in solution, and this effect is due to mass action. We propose that the dissociation of RPA from ssDNA involves a partially dissociated intermediate, which exposes a small section of ssDNA allowing other proteins to access to the DNA.
Journal Article
tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma
by
Sumazin, Pavel
,
Schneider, Christof
,
Holmes, Antony
in
Argonaute Proteins - genetics
,
Argonaute Proteins - metabolism
,
B cell lymphoma
2013
Sequencing studies from several model systems have suggested that diverse and abundant small RNAs may be derived from tRNA, but the function of these molecules remains undefined. Here, we demonstrate that one such tRNA-derived fragment, cloned from human mature B cells and designated CU1276, in fact possesses the functional characteristics of a microRNA, including a DICER1 -dependent biogenesis, physical association with Argonaute proteins, and the ability to repress mRNA transcripts in a sequence-specific manner. Expression of CU1276 is abundant in normal germinal center B cells but absent in germinal center-derived lymphomas, suggesting a role in the pathogenesis of this disease. Furthermore, CU1276 represses endogenous RPA1 , an essential gene involved in many aspects of DNA dynamics, and consequently, expression of this tRNA-derived microRNA in a lymphoma cell line suppresses proliferation and modulates the molecular response to DNA damage. These results establish that functionally active microRNAs can be derived from tRNA, thus defining a class of genetic entities with potentially important biological roles.
Journal Article
The helicase domain of Polθ counteracts RPA to promote alt-NHEJ
by
Mateos-Gomez, Pedro A
,
Hoang, Trung M
,
Deng, Sarah K
in
13/106
,
631/337/103/560
,
631/337/1427
2017
Biochemical and cellular analyses reveal that the helicase activity of DNA polymerase theta (Polθ) antagonizes RPA to promote DNA strand annealing and double-strand break repair via alt-NHEJ in mouse ES cells.
Mammalian polymerase theta (Polθ) is a multifunctional enzyme that promotes error-prone DNA repair by alternative nonhomologous end joining (alt-NHEJ). Here we present structure–function analyses that reveal that, in addition to the polymerase domain, Polθ-helicase activity plays a central role during double-strand break (DSB) repair. Our results show that the helicase domain promotes chromosomal translocations by alt-NHEJ in mouse embryonic stem cells and also suppresses CRISPR–Cas9- mediated gene targeting by homologous recombination (HR).
In vitro
assays demonstrate that Polθ-helicase activity facilitates the removal of RPA from resected DSBs to allow their annealing and subsequent joining by alt-NHEJ. Consistent with an antagonistic role for RPA during alt-NHEJ, inhibition of RPA1 enhances end joining and suppresses recombination. Taken together, our results reveal that the balance between HR and alt-NHEJ is controlled by opposing activities of Polθ and RPA, providing further insight into the regulation of repair-pathway choice in mammalian cells.
Journal Article
DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination
by
Michael Tsang
,
Li Lan
,
Zhiyuan Shen
in
active sites
,
adenosinetriphosphatase
,
Antigens, Nuclear - genetics
2015
Damage repair mechanisms at transcriptionally active sites during the G0/G1 phase are largely unknown. To elucidate these mechanisms, we introduced genome site-specific oxidative DNA damage and determined the role of transcription in repair factor assembly. We find that KU and NBS1 are recruited to damage sites independent of transcription. However, assembly of RPA1, RAD51C, RAD51, and RAD52 at such sites is strictly governed by active transcription and requires both wild-type Cockayne syndrome protein B (CSB) function and the presence of RNA in the G0/G1 phase. We show that the ATPase activity of CSB is indispensable for loading and binding of the recombination factors. CSB counters radiation-induced DNA damage in both cells and zebrafish models. Taken together, our results have uncovered a novel, RNA-based recombination mechanism by which CSB protects genome stability from strand breaks at transcriptionally active sites and may provide insight into the clinical manifestations of Cockayne syndrome.
Journal Article
A Rfa1-MN–based system reveals new factors involved in the rescue of broken replication forks
by
Amiama-Roig, Ana
,
López-Ruiz, Luz M.
,
Barrientos-Moreno, Marta
in
Biology and life sciences
,
Cell cycle
,
Chimeras
2025
The integrity of the replication forks is essential for an accurate and timely completion of genome duplication. However, little is known about how cells deal with broken replication forks. We have generated in yeast a system based on a chimera of the largest subunit of the ssDNA binding complex RPA fused to the micrococcal nuclease (Rfa1-MN) to induce double-strand breaks (DSBs) at replication forks and searched for mutants affected in their repair. Our results show that the core homologous recombination (HR) proteins involved in the formation of the ssDNA/Rad51 filament are essential for the repair of DSBs at forks, whereas non-homologous end joining plays no role. Apart from the endonucleases Mus81 and Yen1, the repair process employs fork-associated HR factors, break-induced replication (BIR)-associated factors and replisome components involved in sister chromatid cohesion and fork stability, pointing to replication fork restart by BIR followed by fork restoration. Notably, we also found factors controlling the length of G1, suggesting that a minimal number of active origins facilitates the repair by converging forks. Our study has also revealed a requirement for checkpoint functions, including the synthesis of Dun1-mediated dNTPs. Finally, our screening revealed minimal impact from the loss of chromatin factors, suggesting that the partially disassembled nucleosome structure at the replication fork facilitates the accessibility of the repair machinery. In conclusion, this study provides an overview of the factors and mechanisms that cooperate to repair broken forks.
Journal Article
Physical interactions between specifically regulated subpopulations of the MCM and RNR complexes prevent genetic instability
by
Cruz, Esther
,
Vertegaal, Alfred C. O.
,
Barrientos-Moreno, Marta
in
Analysis
,
Biology and life sciences
,
Cell cycle
2024
The helicase MCM and the ribonucleotide reductase RNR are the complexes that provide the substrates (ssDNA templates and dNTPs, respectively) for DNA replication. Here, we demonstrate that MCM interacts physically with RNR and some of its regulators, including the kinase Dun1. These physical interactions encompass small subpopulations of MCM and RNR, are independent of the major subcellular locations of these two complexes, augment in response to DNA damage and, in the case of the Rnr2 and Rnr4 subunits of RNR, depend on Dun1. Partial disruption of the MCM/RNR interactions impairs the release of Rad52 –but not RPA–from the DNA repair centers despite the lesions are repaired, a phenotype that is associated with hypermutagenesis but not with alterations in the levels of dNTPs. These results suggest that a specifically regulated pool of MCM and RNR complexes plays non-canonical roles in genetic stability preventing persistent Rad52 centers and hypermutagenesis.
Journal Article
Schlafen 11 further sensitizes BRCA-deficient cells to PARP inhibitors through single-strand DNA gap accumulation behind replication forks
2024
The preferential response to PARP inhibitors (PARPis) in BRCA-deficient and Schlafen 11 (SLFN11)-expressing ovarian cancers has been documented, yet the underlying molecular mechanisms remain unclear. As the accumulation of single-strand DNA (ssDNA) gaps behind replication forks is key for the lethality effect of PARPis, we investigated the combined effects of SLFN11 expression and BRCA deficiency on PARPi sensitivity and ssDNA gap formation in human cancer cells. PARPis increased chromatin-bound RPA2 and ssDNA gaps in SLFN11-expressing cells and even more in cells with BRCA1 or BRCA2 deficiency. SLFN11 was co-localized with chromatin-bound RPA2 under PARPis treatment, with enhanced recruitment in BRCA2-deficient cells. Notably, the chromatin-bound SLFN11 under PARPis did not block replication, contrary to its function under replication stress. SLFN11 recruitment was attenuated by the inactivation of MRE11. Hence, under PARPi treatment, MRE11 expression and BRCA deficiency lead to ssDNA gaps behind replication forks, where SLFN11 binds and increases their accumulation. As ovarian cancer patients who responded (progression-free survival >2 years) to olaparib maintenance therapy had a significantly higher SLFN11-positivity than short-responders (<6 months), our findings provide a mechanistic understanding of the favorable responses to PARPis in SLFN11-expressing and BRCA-deficient tumors. It highlight the clinical implications of SLFN11.
Journal Article
A structural and dynamic model for the assembly of Replication Protein A on single-stranded DNA
2018
Replication Protein A (RPA), the major eukaryotic single stranded DNA-binding protein, binds to exposed ssDNA to protect it from nucleases, participates in a myriad of nucleic acid transactions and coordinates the recruitment of other important players. RPA is a heterotrimer and coats long stretches of single-stranded DNA (ssDNA). The precise molecular architecture of the RPA subunits and its DNA binding domains (DBDs) during assembly is poorly understood. Using cryo electron microscopy we obtained a 3D reconstruction of the RPA trimerisation core bound with ssDNA (∼55 kDa) at ∼4.7 Å resolution and a dimeric RPA assembly on ssDNA. FRET-based solution studies reveal dynamic rearrangements of DBDs during coordinated RPA binding and this activity is regulated by phosphorylation at S178 in RPA70. We present a structural model on how dynamic DBDs promote the cooperative assembly of multiple RPAs on long ssDNA.
Replication Protein A (RPA) coats single stranded DNA (ssDNA) generated during DNA recombination, replication and repair. Here the authors present a structural model suggesting how RPA’s DNA-binding domains promote cooperative assembly of multiple RPAs on long ssDNA.
Journal Article