Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
7,409
result(s) for
"Reproductive health and childbirth"
Sort by:
Gestational weight gain across continents and ethnicity: systematic review and meta-analysis of maternal and infant outcomes in more than one million women
2018
Background
The association between Institute of Medicine (IOM) guidelines and pregnancy outcomes across ethnicities is uncertain. We evaluated the associations of gestational weight gain (GWG) outside 2009 IOM guidelines, with maternal and infant outcomes across the USA, western Europe and east Asia, with subgroup analyses in Asia. The aim was to explore ethnic differences in maternal prepregnancy body mass index (BMI), GWG and health outcomes across these regions.
Methods
Systematic review, meta-analysis and meta-regression of observational studies were used for the study. MEDLINE, MEDLINE In-Process, Embase and all Evidence-Based Medicine (EBM) Reviews were searched from 1999 to 2017. Studies were stratified by prepregnancy BMI category and total pregnancy GWG. Odds ratio (ORs) 95% confidence intervals (CI) applied recommended GWG within each BMI category as the reference. Primary outcomes were small for gestational age (SGA), preterm birth and large for gestational age (LGA). Secondary outcomes were macrosomia, caesarean section and gestational diabetes.
Results
Overall, 5874 studies were identified and 23 were included (
n
= 1,309,136). Prepregnancy overweight/obesity in the USA, Europe and Asia was measured at 42%, 30% and 10% respectively, with underweight 5%, 3% and 17%. GWG below guidelines in the USA, Europe and Asia was 21%, 18% and 31%, and above was 51%, 51% and 37% respectively. Applying regional BMI categories in Asia showed GWG above guidelines (51%) was similar to that in the USA and Europe.
GWG below guidelines was associated with a higher risk of SGA (USA/Europe [OR 1.51; CI 1.39, 1.63]; Asia [1.63; 1.45, 1.82]) and preterm birth (USA/Europe [1.35; 1.17, 1.56]; Asia [1.06; 0.78, 1.44]) than GWG within guidelines. GWG above guidelines was associated with a higher risk of LGA (USA/Europe [1.93; 1.81, 2.06]; Asia [1.68; 1.51 , 1.87]), macrosomia (USA/Europe [1.87; 1.70, 2.06]; Asia [2.18; 1.91, 2.49]) and caesarean (USA/Europe [1.26; 1.21, 1.33]; Asia [1.37; 1.30, 1.45]). Risks remained elevated when regional BMI categories were applied for GWG recommendations. More women in Asia were categorised as having GWG below guidelines using World Health Organization (WHO) (60%) compared to regional BMI categories (16%), yet WHO BMI was not accompanied by increased risks of adverse outcomes.
Conclusions
Women in the USA and western Europe have higher prepregnancy BMI and higher rates of GWG above guidelines than women in east Asia. However, when using regional BMI categories in east Asia, rates of GWG above guidelines are similar across the three continents. GWG outside guidelines is associated with adverse outcomes across all regions. If regional BMI categories are used in east Asia, IOM guidelines are applicable in the USA, western Europe and east Asia.
Journal Article
Proposed Key Characteristics of Female Reproductive Toxicants as an Approach for Organizing and Evaluating Mechanistic Data in Hazard Assessment
by
Ulrike Luderer
,
Martyn T. Smith
,
Osamu Udagawa
in
8-TETRACHLORODIBENZO-P-DIOXIN TCDD
,
Animals
,
Biocompatibility
2019
Identification of female reproductive toxicants is currently based largely on integrated epidemiological and
toxicology data and, to a lesser degree, on mechanistic data. A uniform approach to systematically search, organize, integrate, and evaluate mechanistic evidence of female reproductive toxicity from various data types is lacking.
We sought to apply a key characteristics approach similar to that pioneered for carcinogen hazard identification to female reproductive toxicant hazard identification.
A working group of international experts was convened to discuss mechanisms associated with chemical-induced female reproductive toxicity and identified 10 key characteristics of chemicals that cause female reproductive toxicity: 1) alters hormone receptor signaling; alters reproductive hormone production, secretion, or metabolism; 2) chemical or metabolite is genotoxic; 3) induces epigenetic alterations; 4) causes mitochondrial dysfunction; 5) induces oxidative stress; 6) alters immune function; 7) alters cell signal transduction; 8) alters direct cell–cell interactions; 9) alters survival, proliferation, cell death, or metabolic pathways; and 10) alters microtubules and associated structures. As proof of principle, cyclophosphamide and diethylstilbestrol (DES), for which both human and animal studies have demonstrated female reproductive toxicity, display at least 5 and 3 key characteristics, respectively. 2,3,7,8-Tetrachlorodibenzo-
-dioxin (TCDD), for which the epidemiological evidence is mixed, exhibits 5 key characteristics.
Future efforts should focus on evaluating the proposed key characteristics against additional known and suspected female reproductive toxicants. Chemicals that exhibit one or more of the key characteristics could be prioritized for additional evaluation and testing. A key characteristics approach has the potential to integrate with pathway-based toxicity testing to improve prediction of female reproductive toxicity in chemicals and potentially prevent some toxicants from entering common use. https://doi.org/10.1289/EHP4971.
Journal Article
Serotonin regulates pancreatic beta cell mass during pregnancy
by
Chak, Eric
,
Yagihashi, Soroku
,
Kawamori, Ryuzo
in
631/80/86
,
692/698/1460/1583
,
692/699/2743/137/1926
2010
During pregnancy, women often become insulin resistant, thus requiring an expansion of pancreatic beta cell mass to provide more insulin. Michael German and his colleagues now report that lactogenic hormones drive the expression of serotonin in the beta cells to induce this increase in beta cell mass.
During pregnancy, the energy requirements of the fetus impose changes in maternal metabolism. Increasing insulin resistance in the mother maintains nutrient flow to the growing fetus, whereas prolactin and placental lactogen counterbalance this resistance and prevent maternal hyperglycemia by driving expansion of the maternal population of insulin-producing beta cells
1
,
2
,
3
. However, the exact mechanisms by which the lactogenic hormones drive beta cell expansion remain uncertain. Here we show that serotonin acts downstream of lactogen signaling to stimulate beta cell proliferation. Expression of serotonin synthetic enzyme tryptophan hydroxylase-1 (Tph1) and serotonin production rose sharply in beta cells during pregnancy or after treatment with lactogens
in vitro
. Inhibition of serotonin synthesis by dietary tryptophan restriction or Tph inhibition blocked beta cell expansion and induced glucose intolerance in pregnant mice without affecting insulin sensitivity. Expression of the Gα
q
-linked serotonin receptor 5-hydroxytryptamine receptor-2b (Htr2b) in maternal islets increased during pregnancy and normalized just before parturition, whereas expression of the Gα
i
-linked receptor Htr1d increased at the end of pregnancy and postpartum. Blocking Htr2b signaling in pregnant mice also blocked beta cell expansion and caused glucose intolerance. These studies reveal an integrated signaling pathway linking beta cell mass to anticipated insulin need during pregnancy. Modulators of this pathway, including medications and diet, may affect the risk of gestational diabetes
4
.
Journal Article
Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis
by
Nakatsuji, Norio
,
Dunham, Christopher
,
Vergnes, Laurent
in
Animal experimentation
,
Animal models
,
Animals
2017
The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy. Congenital heart disease is the most common type of birth defect, affecting nearly 1 in 100 children born. It can involve a weak heart, narrowed arteries, narrowed heart valves, or the main arteries of the heart switching places. These conditions can be fatal if untreated and often need surgery to correct. The mother’s blood sugar levels during pregnancy can have a large effect on how likely the baby is to have congenital heart disease. If a pregnant woman has poorly controlled diabetes with rapidly fluctuating sugar levels, she may be at a higher risk of having a child with the condition. High sugar levels in the mother’s blood make the baby up to five times more likely to have congenital heart disease. It has been difficult to find out exactly how sugar levels interfere with heart development because diabetes can affect the fetus in many ways. Nakano et al. used stem cells and experiments in pregnant mice with diabetes to hone in on how high sugar levels affect the fetus’s heart development. First, heart cells were grown from human stem cells, and exposed to high levels of glucose in a dish. This revealed a new mechanism for how high sugar levels affect heart formation: the cells created too many nucleotides, the building blocks of molecules such as DNA. It turns out that high glucose levels boosted a chemical process in the cell known as the pentose phosphate pathway. Some of the products of this pathway are nucleotides. This made the cells divide rapidly, but did not allow them to mature well compared with cells exposed to normal levels of sugar. In another experiment, Nakano et al. found similar results in pregnant diabetic mice. The heart cells in mouse fetuses also divided quickly but matured slowly when exposed to high sugar levels. An estimated 60 million women at an age to have children have diabetes. These new findings help us to understand why and how these women are more likely to have children with congenital heart disease, and further study will hopefully lead to a better way to prevent this condition.
Journal Article
PRC1-mediated epigenetic programming is required to generate the ovarian reserve
2022
The ovarian reserve defines the female reproductive lifespan, which in humans spans decades due to robust maintenance of meiotic arrest in oocytes residing in primordial follicles. Epigenetic reprogramming, including DNA demethylation, accompanies meiotic entry, but the chromatin changes that underpin the generation and preservation of ovarian reserves are poorly defined. We report that the Polycomb Repressive Complex 1 (PRC1) establishes repressive chromatin states in perinatal mouse oocytes that directly suppress the gene expression program of meiotic prophase-I and thereby enable the transition to dictyate arrest. PRC1 dysfuction causes depletion of the ovarian reserve and leads to premature ovarian failure. Our study demonstrates a fundamental role for PRC1-mediated gene silencing in female reproductive lifespan, and reveals a critical window of epigenetic programming required to establish ovarian reserve.
In humans, the ovarian reserve is maintained over decades by meiotic arrest of oocytes. Here the authors show that Polycomb Repressive Complex 1 (PRC1)-mediated epigenetic programming is essential for formation of ovarian reserve and thus female reproductive lifespan.
Journal Article
Matrix metalloproteinase-9 deficiency phenocopies features of preeclampsia and intrauterine growth restriction
2013
The pregnancy complication preeclampsia (PE), which occurs in approximately 3% to 8% of human pregnancies, is characterized by placental pathologies that can lead to significant fetal and maternal morbidity and mortality. Currently, the only known cure is delivery of the placenta. As the etiology of PE remains unknown, it is vital to find models to study this common syndrome. Here we show that matrix metalloproteinase-9 (MMP9) deficiency causes physiological and placental abnormalities in mice, which mimic features of PE. As with the severe cases of this syndrome, which commence early in gestation, MMP9-null mouse embryos exhibit deficiencies in trophoblast differentiation and invasion shortly after implantation, along with intrauterine growth restriction or embryonic death. Reciprocal embryo transfer experiments demonstrated that embryonic MMP9 is a major contributor to normal implantation, but maternal MMP9 also plays a role in embryonic trophoblast development. Pregnant MMP9-null mice bearing null embryos exhibited clinical features of PE as VEGF dysregulation and proteinuria accompanied by preexisting elevated blood pressure and kidney pathology. Thus, our data show that fetal and maternal MMP9 play a role in the development of PE and establish the MMP9-null mice as a much-needed model to study the clinical course of this syndrome.
Journal Article
Intrauterine Growth Restriction Caused by Underlying Congenital Cytomegalovirus Infection
by
Zhou, Yan
,
Kauvar, Lawrence M.
,
Zydek, Martin
in
Antibodies, Neutralizing - blood
,
Antibodies, Viral - blood
,
Biological and medical sciences
2014
Background. Human cytomegalovirus (HCMV) is the major viral etiology of congenital infection and birth defects. Fetal transmission is high (30%-40%) in primary maternal infection, and symptomatic babies have permanent neurological, hearing, and vision defects. Recurrent infection is infrequently transmitted (2%) and largely asymptomatic. Congenital infection is also associated with intrauterine growth restriction (IUGR). Methods. To investigate possible underlying HCMV infection in cases of idiopathic IUGR, we studied maternal and cord sera and placentas from 19 pregnancies. Anti-HCMV antibodies, hypoxia-related factors, and cmvIL-10 were measured in sera. Placental biopsy specimens were examined for viral DNA, expression of infected cell proteins, and pathology. Results. Among 7 IUGR cases, we identified 2 primary and 3 recurrent HCMV infections. Virus replicated in glandular epithelium and lymphatic endothelium in the decidua, cytotrophoblasts, and smooth muscle cells in bloodvessels of floating villi and the chorion. Large fibrinoids with avascular villi, edema, and inflammation were significantly increased. Detection of viral proteins in the amniotic epithelium indicated transmission in 2 cases of IUGR with primary infection and 3 asymptomatic recurrent infections. Conclusions. Congenital HCMV infection impairs placental development and functions and should be considered as an underlying cause of IUGR, regardless of virus transmission to the fetus.
Journal Article
Transcription factors SOHLH1 and SOHLH2 coordinate oocyte differentiation without affecting meiosis I
by
Ren, Yu
,
Golnoski, Kayla J.
,
Rajkovic, Aleksandar
in
Active Transport, Cell Nucleus
,
Animals
,
Basic Helix-Loop-Helix Transcription Factors - physiology
2017
Following migration of primordial germ cells to the genital ridge, oogonia undergo several rounds of mitotic division and enter meiosis at approximately E13.5. Most oocytes arrest in the dictyate (diplotene) stage of meiosis circa E18.5. The genes necessary to drive oocyte differentiation in parallel with meiosis are unknown. Here, we have investigated whether expression of spermatogenesis and oogenesis bHLH transcription factor 1 (Sohlh1) and Sohlh2 coordinates oocyte differentiation within the embryonic ovary. We found that SOHLH2 protein was expressed in the mouse germline as early as E12.5 and preceded SOHLH1 protein expression, which occurred circa E15.5. SOHLH1 protein appearance at E15.5 correlated with SOHLH2 translocation from the cytoplasm into the nucleus and was dependent on SOHLH1 expression. NOBOX oogenesis homeobox (NOBOX) and LIM homeobox protein 8 (LHX8), two important regulators of postnatal oogenesis, were coexpressed with SOHLH1. Single deficiency of Sohlh1 or Sohlh2 disrupted the expression of LHX8 and NOBOX in the embryonic gonad without affecting meiosis. Sohlh1-KO infertility was rescued by conditional expression of the Sohlh1 transgene after the onset of meiosis. However, Sohlh1 or Sohlh2 transgene expression could not rescue Sohlh2-KO infertility due to a lack of Sohlh1 or Sohlh2 expression in rescued mice. Our results indicate that Sohlh1 and Sohlh2 are essential regulators of oocyte differentiation but do not affect meiosis I.
Journal Article
Effect of a nutrient-rich, food-based supplement given to rural Vietnamese mothers prior to and/or during pregnancy on birth outcomes: A randomized controlled trial
by
Benjamin W. Chaffee
,
Tu Ngu
,
Hoang T. Nga
in
3.3 Nutrition and chemoprevention
,
and promotion of well-being
,
Animal-based foods
2020
Obtaining a nutrient-rich diet during pregnancy is a challenge for pregnant women living in low-income countries. This randomized, controlled trial was designed to determine if a freshly prepared food supplement from local animal-source foods and dark-green leafy vegetables given prior to and/or during pregnancy improved birth outcomes in rural Vietnamese women. Primiparous women, 18 to 30 years of age, who participated in the study were assigned to one of three groups: PC-T women received the supplement from pre-conception to term, MG-T women received the supplement from mid-gestation to term, and the RPC women received routine prenatal care. Supplement intake was observed and quantified. Infant anthropometry was measured at birth and/or within seven days of delivery. The effect of the intervention on maternal and birth outcomes was determined using linear regression modeling. Of the 460 women enrolled in the study, 317 women completed the study. Those not completing the study had either moved from the area, did not conceive within 12 months of study enrollment, or miscarried. The food-based supplement increased protein, iron, zinc, folate, vitamin A and B12 intakes in the PC-T and the MG-T groups. However, it failed to alter infant anthropometric measurements at birth. In the entire cohort, maternal gestational weight gain was greater in women with a low pre-pregnancy BMI (<18.5) and in women with a higher educational attainment. Working as a farmer reduced gestational weight gain but it did not affect birth weight or length. In summary, a nutrient-rich, food-based supplement given to rural Vietnamese women from pre-conception to term or mid-gestation to term did not affect maternal or infant outcomes. The low weight gains, possibly due to demanding farm work done throughout the reproductive cycle, may have obviated any effects of the low energy, nutrient-rich food supplement on birth outcomes. Trial registration : Registered Clinical Trials.gov: NCT01235767.
Journal Article
Key role of soluble epoxide hydrolase in the neurodevelopmental disorders of offspring after maternal immune activation
2019
Maternal infection during pregnancy increases risk of neurodevelopmental disorders such as schizophrenia and autism spectrum disorder (ASD) in offspring. In rodents, maternal immune activation (MIA) yields offspring with schizophrenia- and ASD-like behavioral abnormalities. Soluble epoxide hydrolase (sEH) plays a key role in inflammation associated with neurodevelopmental disorders. Here we found higher levels of sEH in the prefrontal cortex (PFC) of juvenile offspring after MIA. Oxylipin analysis showed decreased levels of epoxy fatty acids in the PFC of juvenile offspring after MIA, supporting increased activity of sEH in the PFC of juvenile offspring. Furthermore, expression of sEH (or EPHX2) mRNA in induced pluripotent stem cell-derived neurospheres from schizophrenia patients with the 22q11.2 deletion was higher than that of healthy controls. Moreover, the expression of EPHX2 mRNA in postmortem brain samples (Brodmann area 9 and 40) from ASD patients was higher than that of controls. Treatment with 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea (TPPU), a potent sEH inhibitor, in juvenile offspring from prenatal day (P) 28 to P56 could prevent cognitive deficits and loss of parvalbumin (PV) immunoreactivity in the medial PFC of adult offspring after MIA. In addition, dosing of TPPU to pregnant mothers from E5 to P21 could prevent cognitive deficits, and social interaction deficits and PV immunoreactivity in the medial prefrontal cortex of juvenile offspring after MIA. These findings suggest that increased activity of sEH in the PFC plays a key role in the etiology of neurodevelopmental disorders in offspring after MIA. Therefore, sEH represents a promising prophylactic or therapeutic target for neurodevelopmental disorders in offspring after MIA.
Journal Article