Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
12,580
result(s) for
"Resorption"
Sort by:
A GABAergic neural circuit in the ventromedial hypothalamus mediates chronic stress–induced bone loss
2020
Homeostasis of bone metabolism is regulated by the central nervous system, and mood disorders such as anxiety are associated with bone metabolism abnormalities, yet our understanding of the central neural circuits regulating bone metabolism is limited. Here, we demonstrate that chronic stress in crewmembers resulted in decreased bone density and elevated anxiety in an isolated habitat mimicking a space station. We then used a mouse model to demonstrate that GABAergic neural circuitry in the ventromedial hypothalamus (VMH) mediates chronic stress-induced bone loss. We show that GABAergic inputs in the dorsomedial VMH arise from a specific group of somatostatin neurons in the posterior region of the bed nucleus of the stria terminalis, which is indispensable for stress-induced bone loss and is able to trigger bone loss in the absence of stressors. In addition, the sympathetic system and glutamatergic neurons in the nucleus tractus solitarius were employed to regulate stress-induced bone loss. Our study has therefore identified the central neural mechanism by which chronic stress-induced mood disorders, such as anxiety, influence bone metabolism.
Journal Article
Mitochondrial dysfunction impairs osteogenesis, increases osteoclast activity, and accelerates age related bone loss
2020
The pathogenesis of declining bone mineral density, a universal feature of ageing, is not fully understood. Somatic mitochondrial DNA (mtDNA) mutations accumulate with age in human tissues and mounting evidence suggests that they may be integral to the ageing process. To explore the potential effects of mtDNA mutations on bone biology, we compared bone microarchitecture and turnover in an ageing series of wild type mice with that of the
PolgA
mut/mut
mitochondrial DNA ‘mutator’ mouse. In vivo analyses showed an age-related loss of bone in both groups of mice; however, it was significantly accelerated in the
PolgA
mut/mut
mice. This accelerated rate of bone loss is associated with significantly reduced bone formation rate, reduced osteoblast population densities, increased osteoclast population densities, and mitochondrial respiratory chain deficiency in osteoblasts and osteoclasts in
PolgA
mut/mut
mice compared with wild-type mice. In vitro assays demonstrated severely impaired mineralised matrix formation and increased osteoclast resorption by
PolgA
mut/mut
cells. Finally, application of an exercise intervention to a subset of
PolgA
mut/mut
mice showed no effect on bone mass or mineralised matrix formation in vitro. Our data demonstrate that mitochondrial dysfunction, a universal feature of human ageing, impairs osteogenesis and is associated with accelerated bone loss.
Journal Article
Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence
by
Lambers, Hans
,
Turner, Benjamin L
,
Bellingham, Peter
in
age of soil
,
Agricultural soils
,
Animal and plant ecology
2014
Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2‐million‐year dune chronosequence in south‐western Australia. We also compared these traits among plants of contrasting nutrient‐acquisition strategies, focusing on N, P and micronutrients. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g⁻¹) and senesced (19–5600 μg P g⁻¹) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover‐weighted mean leaf [P] declined from 1840 to 228 μg P g⁻¹, while P‐resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P‐use strategy on the oldest soils. Declines in cover‐weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g⁻¹ on the youngest soil to 9.5 mg N g⁻¹ on the oldest soil. However, mean leaf N‐resorption efficiency was greatest (45%) on the youngest, N‐poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn‐resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. N₂‐fixing species had high leaf [N] compared with other species. Non‐mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. Synthesis. Our results show community‐wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long‐term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co‐limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies.
Journal Article
Probiotics Protect Mice from Ovariectomy-Induced Cortical Bone Loss
2014
The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.
Journal Article
Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss
by
Levkau, Bodo
,
Völzke, Henry
,
Dörr, Marcus
in
Adipocytes - drug effects
,
Adipocytes - metabolism
,
Adipogenesis
2018
Sphingosine-1-phosphate (S1P) signaling influences bone metabolism, but its therapeutic potential in bone disorders has remained unexplored. We show that raising S1P levels in adult mice through conditionally deleting or pharmacologically inhibiting S1P lyase, the sole enzyme responsible for irreversibly degrading S1P, markedly increased bone formation, mass and strength and substantially decreased white adipose tissue. S1P signaling through S1P
2
potently stimulated osteoblastogenesis at the expense of adipogenesis by inversely regulating osterix and PPAR-γ, and it simultaneously inhibited osteoclastogenesis by inducing osteoprotegerin through newly discovered p38–GSK3β–β-catenin and WNT5A–LRP5 pathways. Accordingly, S1P
2
-deficient mice were osteopenic and obese. In ovariectomy-induced osteopenia, S1P lyase inhibition was as effective as intermittent parathyroid hormone (iPTH) treatment in increasing bone mass and was superior to iPTH in enhancing bone strength. Furthermore, lyase inhibition in mice successfully corrected severe genetic osteoporosis caused by osteoprotegerin deficiency. Human data from 4,091 participants of the SHIP-Trend population-based study revealed a positive association between serum levels of S1P and bone formation markers, but not resorption markers. Furthermore, serum S1P levels were positively associated with serum calcium , negatively with PTH , and curvilinearly with body mass index. Bone stiffness, as determined through quantitative ultrasound, was inversely related to levels of both S1P and the bone formation marker PINP, suggesting that S1P stimulates osteoanabolic activity to counteract decreasing bone quality. S1P-based drugs should be considered as a promising therapeutic avenue for the treatment of osteoporotic diseases.
Promoting more bone growth is of keen interest in the treatment of osteoporosis, and preventing the degradation of S1P offers a new therapeutic avenue for this approach.
Journal Article
Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment
2012
In this Review, the authors summarize the substantial progress that has been made in understanding the pathophysiology of bone erosions and discuss the improvements in the diagnosis, monitoring and treatment of such lesions.
Bone erosion is a central feature of rheumatoid arthritis and is associated with disease severity and poor functional outcome. Erosion of periarticular cortical bone, the typical feature observed on plain radiographs in patients with rheumatoid arthritis, results from excessive local bone resorption and inadequate bone formation. The main triggers of articular bone erosion are synovitis, including the production of proinflammatory cytokines and receptor activator of nuclear factor κB ligand (RANKL), as well as antibodies directed against citrullinated proteins. Indeed, both cytokines and autoantibodies stimulate the differentiation of bone-resorbing osteoclasts, thereby stimulating local bone resorption. Although current antirheumatic therapy inhibits both bone erosion and inflammation, repair of existing bone lesions, albeit physiologically feasible, occurs rarely. Lack of repair is due, at least in part, to active suppression of bone formation by proinflammatory cytokines. This Review summarizes the substantial progress that has been made in understanding the pathophysiology of bone erosions and discusses the improvements in the diagnosis, monitoring and treatment of such lesions.
Key Points
Articular bone erosions are a central clinical feature of rheumatoid arthritis
Imaging techniques enable early detection of bone erosions and provide insights into disease pathogenesis
Bone erosion is a result of enhanced osteoclast differentiation and inhibition of osteoblast-mediated bone repair
Autoantibodies and cytokines, including proinflammatory cytokines and receptor activator of nuclear factor κB ligand, are the major precipitating factors in bone erosion in rheumatoid arthritis
Antirheumatic therapies block progression of bone erosion by mitigating synovial inflammation and restoring bone balance
Journal Article
Metformin attenuates osteoclast-mediated abnormal subchondral bone remodeling and alleviates osteoarthritis via AMPK/NF-κB/ERK signaling pathway
by
Ding, Dong
,
Yan, Jiangbo
,
Guo, Haohui
in
Acid phosphatase
,
Acid phosphatase (tartrate-resistant)
,
Acid resistance
2021
This study explored the mechanism by which metformin (Met) inhibits osteoclast activation and determined its effects on osteoarthritis (OA) mice. Bone marrow-derived macrophages were isolated. Osteoclastogenesis was detected using tartrate-resistant acid phosphatase (TRAP) staining. Cell proliferation was evaluated using CCK-8, F-actin rings were detected by immunofluorescence staining, and bone resorption was detected using bone slices. Nuclear factor kappa-B (NF-κB) and nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) were detected using luciferase assays, and the adenosine monophosphate-activated protein kinase (AMPK), NF-κB, and mitogen-activated protein kinase (MAPK) signaling pathways were detected using western blotting. Finally, expression of genes involved in osteoclastogenesis was measured using quantitative polymerase chain reaction. A knee OA mouse model was established by destabilization of the medial meniscus (DMM). Male C57BL/6J mice were assigned to sham-operated, DMM+vehicle, and DMM+Met groups. Met (100 mg/kg/d) or vehicle was administered from the first day postoperative until sacrifice. At 4- and 8-week post OA induction, micro-computed tomography was performed to analyze microstructural changes in the subchondral bone, hematoxylin and eosin staining and Safranin-O/Fast Green staining were performed to evaluate the degenerated cartilage, TRAP-stained osteoclasts were enumerated, and receptor activator of nuclear factor κB ligand (RANKL), AMPK, and NF-κB were detected using immunohistochemistry. BMM proliferation was not affected by Met treatment below 2 mM. Met inhibited osteoclast formation and bone resorption in a dose-dependent manner in vitro . Met suppressed RANKL-induced activation of p-AMPK, NF-κB, phosphorylated extracellular regulated protein kinases (p-ERK) and up-regulation of genes involved in osteoclastogenesis. Met reversed decreases in BV/TV, Tb.Th, Tb.N, and CD, and an increase in Tb.Sp at 4 weeks postoperatively. The number of osteoclasts and OARSI score were decreased by Met without effect on body weight or blood glucose levels. Met inhibited RANKL, p-AMPK, and NF-κB expression in early OA. The mechanism by which Met inhibits osteoclast activation may be associated with AMPK/NF-κB/ERK signaling pathway, indicating a novel strategy for OA treatment.
Journal Article
RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation
by
Nakashima, Tomoki
,
Takayanagi, Hiroshi
,
Komatsu, Noriko
in
Animals
,
Arthritis
,
Arthritis, Experimental - immunology
2016
ObjectiveRANKL is mainly expressed by synovial fibroblasts and T cells within the joints of rheumatoid arthritis patients. The relative importance of RANKL expression by these cell types for the formation of bone erosions is unclear. We therefore aimed to quantify the contribution of RANKL by each cell type to osteoclast differentiation and bone destruction during inflammatory arthritis.MethodsRANKL was specifically deleted in T cells (Tnfsf11flox/Δ Lck-Cre), in collagen VI expressing cells including synovial fibroblasts (Tnfsf11flox/Δ Col6a1-Cre) and in collagen II expressing cells including articular chondrocytes (Tnfsf11flox/Δ Col2a1-Cre). Erosive disease was induced using the collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis (CIA) models. Osteoclasts and cartilage degradation were assessed by histology and bone erosions were assessed by micro-CT.ResultsThe inflammatory joint score during CAIA was equivalent in all mice regardless of cell-targeted deletion of RANKL. Significant increases in osteoclast numbers and bone erosions were observed in both the Tnfsf11flox/Δ and the Tnfsf11flox/Δ Lck-Cre groups during CAIA; however, the Tnfsf11flox/Δ Col6a1-Cre mice showed significant protection against osteoclast formation and bone erosions. Similar results on osteoclast formation and bone erosions were obtained in CIA mice. The deletion of RANKL on any cell type did not prevent articular cartilage loss in either model of arthritis used.ConclusionsThe expression of RANKL on synovial fibroblasts rather than T cells is predominantly responsible for the formation of osteoclasts and erosions during inflammatory arthritis. Synovial fibroblasts would be the best direct target in RANKL inhibition therapies.
Journal Article
Dual targeting of SREBP2 and ERRα by carnosic acid suppresses RANKL-mediated osteoclastogenesis and prevents ovariectomy-induced bone loss
2020
Osteoporosis develops because of impaired bone formation and/or excessive bone resorption. Several pharmacological treatment of osteoporosis has been developed; however, new treatments are still necessary. Cholesterol and estrogen receptor-related receptor alpha (ERRα) promote osteoclasts formation, survival, and cellular fusion and thus become high risk factors of osteoporosis. In this study, we identified that carnosic acid (CA) suppressed bone loss by dual-targeting of sterol regulatory element-binding protein 2 (SREBP2, a major regulator that regulates cholesterol synthesis) and ERRα. Mechanistically, CA reduced nuclear localization of mature SREBP2 and suppressed de novo biogenesis of cholesterol. CA subsequently decreased the interaction between ERRα and peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β), resulting in decreased the transcription activity of ERRα and its target genes expression. Meanwhile, CA directly bound to the ligand-binding domain of ERRα and significantly promoted its ubiquitination and proteasomal degradation. Subsequently, STUB1 was identified as the E3 ligase of ERRα. The lysine residues (K51 and K68) are essential for ubiquitination and proteasomal degradation of ERRα by CA. In conclusion, CA dually targets SREBP2 and ERRα, thus inhibits the RANKL-induced osteoclast formation and improves OVX-induced bone loss. CA may serve as a lead compound for pharmacological control of osteoporosis.
Journal Article
Osteoclast-secreted SLIT3 coordinates bone resorption and formation
by
Kim, Eun-Young
,
Ahn, Seong Hee
,
Kim, Hyeonmok
in
Animals
,
Autocrine Communication
,
Autocrine signalling
2018
Coupling is the process that links bone resorption to bone formation in a temporally and spatially coordinated manner within the remodeling cycle. Several lines of evidence point to the critical roles of osteoclast-derived coupling factors in the regulation of osteoblast performance. Here, we used a fractionated secretomic approach and identified the axon-guidance molecule SLIT3 as a clastokine that stimulated osteoblast migration and proliferation by activating β-catenin. SLIT3 also inhibited bone resorption by suppressing osteoclast differentiation in an autocrine manner. Mice deficient in Slit3 or its receptor, Robo1, exhibited osteopenic phenotypes due to a decrease in bone formation and increase in bone resorption. Mice lacking Slit3 specifically in osteoclasts had low bone mass, whereas mice with either neuron-specific Slit3 deletion or osteoblast-specific Slit3 deletion had normal bone mass, thereby indicating the importance of SLIT3 as a local determinant of bone metabolism. In postmenopausal women, higher circulating SLIT3 levels were associated with increased bone mass. Notably, injection of a truncated recombinant SLIT3 markedly rescued bone loss after an ovariectomy. Thus, these results indicate that SLIT3 plays an osteoprotective role by synchronously stimulating bone formation and inhibiting bone resorption, making it a potential therapeutic target for metabolic bone diseases.
Journal Article