Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
125 result(s) for "Reticulation"
Sort by:
Inferring Phylogenetic Networks Using PhyloNet
PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the “minimizing deep coalescences” criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.
Most Genomic Loci Misrepresent the Phylogeny of an Avian Radiation Because of Ancient Gene Flow
Phylogenetic trees based on genome-wide sequence data may not always represent the true evolutionary history for a variety of reasons. One process that can lead to incorrect reconstruction of species phylogenies is gene flow, especially if interspecific gene flow has affected large parts of the genome. We investigated phylogenetic relationships within a clade comprising eight species of passerine birds (Phylloscopidae, Phylloscopus, leaf warblers) using one de novo genome assembly and 78 resequenced genomes. On the basis of hypothesis-exclusion trials based on D-statistics, phylogenetic network analysis, and demographic inference analysis, we identified ancient gene flow affecting large parts of the genome between one species and the ancestral lineage of a sister species pair. This ancient gene flow consistently caused erroneous reconstruction of the phylogeny when using large amounts of genome-wide sequence data. In contrast, the true relationships were captured when smaller parts of the genome were analyzed, showing that the “winner-takes-all democratic majority tree” is not necessarily the true species tree. Under this condition, smaller amounts of data may sometimes avoid the effects of gene flow due to stochastic sampling, as hidden reticulation histories are more likely to emerge from the use of larger data sets, especially whole-genome data sets. In addition, we also found that genomic regions affected by ancient gene flow generally exhibited higher genomic differentiation but a lower recombination rate and nucleotide diversity. Our study highlights the importance of considering reticulation in phylogenetic reconstructions in the genomic era.
Ancestral Gene Flow and Parallel Organellar Genome Capture Result in Extreme Phylogenomic Discord in a Lineage of Angiosperms
While hybridization has recently received a resurgence of attention from systematists and evolutionary biologists, there remains a dearth of case studies on ancient, diversified hybrid lineages—clades of organisms that originated through reticulation. Studies on these groups are valuable in that they would speak to the long-term phylogenetic success of lineages following gene flow between species. We present a phylogenomic view of Heuchera, long known for frequent hybridization, incorporating all three independent genomes: targeted nuclear (∼400,000 bp), plastid (∼160,000 bp), and mitochondrial (∼470,000 bp) data. We analyze these data using multiple concatenation and coalescence strategies. The nuclear phylogeny is consistent with previous work and with morphology, confidently suggesting a monophyletic Heuchera. By contrast, analyses of both organellar genomes recover a grossly polyphyletic Heuchera, consisting of three primary clades with relationships extensively rearranged within these as well. A minority of nuclear loci also exhibit phylogenetic discord; yet these topologies remarkably never resemble the pattern of organellar loci and largely present low levels of discord inter alia. Two independent estimates of the coalescent branch length of the ancestor of Heuchera using nuclear data suggest rare or nonexistent incomplete lineage sorting with related clades, inconsistent with the observed gross polyphyly of organellar genomes (confirmed by simulation of gene trees under the coalescent). These observations, in combination with previous work, strongly suggest hybridization as the cause of this phylogenetic discord.
Coestimating Reticulate Phylogenies and Gene Trees from Multilocus Sequence Data
The multispecies network coalescent (MSNC) is a stochastic process that captures how gene trees grow within the branches of a phylogenetic network. Coupling the MSNC with a stochastic mutational process that operates along the branches of the gene trees gives rise to a generative model of how multiple loci from within and across species evolve in the presence of both incomplete lineage sorting (ILS) and reticulation (e.g., hybridization). We report on a Bayesian method for sampling the parameters of this generative model, including the species phylogeny, gene trees, divergence times, and population sizes, from DNA sequences of multiple independent loci. We demonstrate the utility of our method by analyzing simulated data and reanalyzing an empirical data set. Our results demonstrate the significance of not only coestimating species phylogenies and gene trees, but also accounting for reticulation and ILS simultaneously. In particular, we show that when gene flow occurs, our method accurately estimates the evolutionary histories, coalescence times, and divergence times. Tree inference methods, on the other hand, underestimate divergence times and overestimate coalescence times when the evolutionary history is reticulate. While the MSNC corresponds to an abstract model of “intermixture,” we study the performance of the model and method on simulated data generated under a gene flow model. We show that the method accurately infers the most recent time at which gene flow occurs. Finally, we demonstrate the application of the new method to a 106-locus yeast data set.
Metschnikowia pulcherrima and Related Pulcherrimin-Producing Yeasts: Fuzzy Species Boundaries and Complex Antimicrobial Antagonism
Yeasts affiliated with the Metschnikowia pulcherrima clade (subclade) of the large ascomycetous genus Metschnikowia frequently turn out to produce the characteristic maroon-red pulcherrimin when tested for pigment production and prove to exert antagonistic effects on many types of microorganisms. The determination of the exact taxonomic position of the strains is hampered by the shortage of distinctive morphological and physiological properties of the species of the clade and the lack of rDNA barcode gaps. The rDNA repeats of the type strains of the species are not homogenized and are assumed to evolve by a birth-and-death mechanism combined with reticulation. The taxonomic division is further hampered by the incomplete biological (reproductive) isolation of the species: certain type strains can be hybridized and genome sequencing revealed chimeric genome structures in certain strains that might have evolved from interspecies hybrids (alloploid genome duplication). Various mechanisms have been proposed for the antimicrobial antagonism. One is related to pulcherrimin production. The diffusible precursor of pulcherrimin, the pulcherriminic acid is secreted by the cells into the environment where it forms the insoluble pulcherrimin with the ferric ions. The lack of free iron caused by the immobilization of ferric ions inhibits the growth of many microorganisms. Recent results of research into the complexity of the taxonomic division of the pulcherrimin-producing Metschnikowia yeasts and the mechanism(s) underlying their antimicrobial antagonism are discussed in this review.
New prospects in the detection and comparative analysis of hybridization in the tree of life
Assessing the relative importance of the various pathways to diversification is a central goal of biodiversity researchers. For plant biologists, and increasingly across the spectrum of biological sciences, among these pathways of interest is hybridization. New methodological developments are moving the field away from questions of whether natural hybridization occurs or hybrids can persist and toward more direct assessments of the long-term impact of hybridization on diversification and genome organization. Advances in theory and new data, especially phylogenomic data, have changed the face of this field, revealing extensive occurrences of hybridization at both shallow and deep levels, but lacking is a synthesis of these advancements. Here we provide an overview of methods that have been proposed for detecting hybridization with molecular data and advocate a time-extended, comparative view of reticulate evolution. In particular, we pose three overarching questions, newly placed within reach, that are critical for advancing our understanding of hybridization pattern and process: (1) How often is introgression biased toward certain genomes and loci, and is this bias selectively neutral? (2) What are the relative rates of formation of hybrid species and introgressants, and how does this compare to their subsequent fates? (3) Has the frequency of hybridization increased under historical periods of greater dynamism in climate and geographic range, such as the Pleistocene?
Out of Sight, Out of Mind
Phylogenomic data froma rapidly increasing number of studies provide newe vidence for resolving relationships in recently radiated clades, but they also pose new challenges for inferring evolutionary histories. Most existing methods for reconstructing phylogenetic hypotheses rely solely on algorithms that only consider incomplete lineage sorting (ILS) as a cause of intra- or intergenomic discordance. Here, we utilize a variety of methods, including those to infer phylogenetic networks, to account for both ILS and introgression as a cause for nuclear and cytoplasmic-nuclear discordance using phylogenomic data from the recently radiated flowering plant genus Polemonium (Polemoniaceae), an ecologically diverse genus in Western North America with known and suspected gene flow between species. We find evidence for widespread discordance among nuclear loci that can be explained by both ILS and reticulate evolution in the evolutionary history of Polemonium. Furthermore, the histories of organellar genomes show strong discordance with the inferred species tree from the nuclear genome. Discordance between the nuclear and plastid genome is not completely explained by ILS, and only one case of discordance is explained by detected introgression events. Our results suggest that multiple processes have been involved in the evolutionary history of Polemonium and that the plastid genome does not accurately reflect species relationships. We discuss several potential causes for this cytoplasmic-nuclear discordance, which emerging evidence suggests is more widespread across the Tree of Life than previously thought.
A Comprehensive Approach to Detect Hybridization Sheds Light on the Evolution of Earth’s Largest Lizards
Hybridization between species occurs more frequently in vertebrates than traditionally thought, but distinguishing ancient hybridization from other phenomena that generate similar evolutionary patterns remains challenging. Here, we used a comprehensive workflow to discover evidence of ancient hybridization between the Komodo dragon (Varanus komodoensis) from Indonesia and a common ancestor of an Australian group of monitor lizards known colloquially as sand monitors. Our data comprise >300 nuclear loci, mitochondrial genomes, phenotypic data, fossil and contemporary records, and past/present climatic data. We show that the four sand monitor species share more nuclear alleles with V. komodoensis than expected given a bifurcating phylogeny, likely as a result of hybridization between the latter species and a common ancestor of sand monitors. Sand monitors display phenotypes that are intermediate between their closest relatives and V. komodoensis. Biogeographic analyses suggest that V. komodoensis and ancestral sand monitors co-occurred in northern Australia. In agreement with the fossil record, this provides further evidence that the Komodo dragon once inhabited the Australian continent. Our study shows how different sources of evidence can be used to thoroughly characterize evolutionary histories that deviate from a treelike pattern, that hybridization can have long-lasting effects on phenotypes, and that detecting hybridization can improve our understanding of evolutionary and biogeographic patterns.
The Role of Introgression During the Radiation of Endemic Fishes Adapted to Living at Extreme Altitudes in the Tibetan Plateau
Abstract Recent genomic analyses of evolutionary radiations suggest that ancient introgression may facilitate rapid diversification and adaptive radiation. The loach genus Triplophysa, a genus with most species endemic to Tibetan Plateau, shows ecological diversity and rapid evolution and represents a potential example of adaptive radiation linked to the uplift of the Tibetan Plateau. Here, we interrogate the complex evolutionary history of Triplophysa fishes through the analysis of whole-genome sequences. By reconstructing the phylogeny of Triplophysa, quantifying introgression across this clade, and simulating speciation and migration processes, we confirm that extensive gene flow events occurred across disparate Triplophysa species. Our results suggest that introgression plays a more substantial role than incomplete lineage sorting in underpinning phylogenetic discordance in Triplophysa. The results also indicate that genomic regions affected by ancient gene flow exhibit characteristics of lower recombination rates and nucleotide diversity and may associate with selection. Simulation analysis of Triplophysa tibetana suggests that the species may have been affected by the Gonghe Movement in the third uplift of the Tibetan Plateau, resulting in founder effects and a subsequent reduction in Ne.
Phylogenetic Trees and Networks Can Serve as Powerful and Complementary Approaches for Analysis of Genomic Data
Genomic data have had a profound impact on nearly every biological discipline. In systematics and phylogenetics, the thousands of loci that are now being sequenced can be analyzed under the multispecies coalescent model (MSC) to explicitly account for gene tree discordance due to incomplete lineage sorting (ILS). However, the MSC assumes no gene flow post divergence, calling for additional methods that can accommodate this limitation. Explicit phylogenetic network methods have emerged, which can simultaneously account for ILS and gene flow by representing evolutionary history as a directed acyclic graph. In this point of view, we highlight some of the strengths and limitations ofphylogenetic networks and argue that tree-based inference should not be blindly abandoned in favor of networks simply because they represent more parameter rich models. Attention should be given to model selection of reticulation complexity, and the most robust conclusions regarding evolutionary history are likely obtained when combining tree- and network-based inference.