Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
48
result(s) for
"Reversible process (thermodynamics)"
Sort by:
An ultra-stable gold-coordinated protein cage displaying reversible assembly
2019
Symmetrical protein cages have evolved to fulfil diverse roles in nature, including compartmentalization and cargo delivery
1
, and have inspired synthetic biologists to create novel protein assemblies via the precise manipulation of protein–protein interfaces. Despite the impressive array of protein cages produced in the laboratory, the design of inducible assemblies remains challenging
2
,
3
. Here we demonstrate an ultra-stable artificial protein cage, the assembly and disassembly of which can be controlled by metal coordination at the protein–protein interfaces. The addition of a gold (
i
)-triphenylphosphine compound to a cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, which generates monodisperse cage structures with masses greater than 2 MDa. The geometry of these structures is based on the Archimedean snub cube and is, to our knowledge, unprecedented. Cryo-electron microscopy confirms that the assemblies are held together by 120 S–Au
i
–S staples between the protein oligomers, and exist in two chiral forms. The cage shows extreme chemical and thermal stability, yet it readily disassembles upon exposure to reducing agents. As well as gold, mercury(
ii
) is also found to enable formation of the protein cage. This work establishes an approach for linking protein components into robust, higher-order structures, and expands the design space available for supramolecular assemblies to include previously unexplored geometries.
An artificial protein cage is readily assembled by metal ion coordination and disassembled by reducing agents, and displays excellent chemical and thermal stability.
Journal Article
Reversible Hydrogen Storage Using Nanocomposites
by
Srinivasan, Sesha
,
Kaushik, Ajeet
,
Sharma, Meenu
in
Applied research
,
ball-milling
,
Carbon fibers
2020
In the field of energy storage, recently investigated nanocomposites show promise in terms of high hydrogen uptake and release with enhancement in the reaction kinetics. Among several, carbonaceous nanovariants like carbon nanotubes (CNTs), fullerenes, and graphitic nanofibers reveal reversible hydrogen sorption characteristics at 77 K, due to their van der Waals interaction. The spillover mechanism combining Pd nanoparticles on the host metal-organic framework (MOF) show room temperature uptake of hydrogen. Metal or complex hydrides either in the nanocomposite form and its subset, nanocatalyst dispersed alloy phases illustrate the concept of nanoengineering and nanoconfinement of particles with tailor-made properties for reversible hydrogen storage. Another class of materials comprising polymeric nanostructures such as conducting polyaniline and their functionalized nanocomposites are versatile hydrogen storage materials because of their unique size, high specific surface-area, pore-volume, and bulk properties. The salient features of nanocomposite materials for reversible hydrogen storage are reviewed and discussed.
Journal Article
The everett interpretation of quantum mechanics
by
Byrne, Peter
,
Barrett, Jeffrey A
in
Classical electromagnetism
,
Classical mechanics
,
Classical physics
2012
Hugh Everett III was an American physicist best known for his many-worlds interpretation of quantum mechanics, which formed the basis of his PhD thesis at Princeton University in 1957. Although counterintuitive, Everett's revolutionary formulation of quantum mechanics offers the most direct solution to the infamous quantum measurement problem--that is, how and why the singular world of our experience emerges from the multiplicities of alternatives available in the quantum world. The many-worlds interpretation postulates the existence of multiple universes. Whenever a measurement-like interaction occurs, the universe branches into relative states, one for each possible outcome of the measurement, and the world in which we find ourselves is but one of these many, but equally real, possibilities. Everett's challenge to the orthodox interpretation of quantum mechanics was met with scorn from Niels Bohr and other leading physicists, and Everett subsequently abandoned academia to conduct military operations research. Today, however, Everett's formulation of quantum mechanics is widely recognized as one of the most controversial but promising physical theories of the last century.
In this book, Jeffrey Barrett and Peter Byrne present the long and short versions of Everett's thesis along with a collection of his explanatory writings and correspondence. These primary source documents, many of them newly discovered and most unpublished until now, reveal how Everett's thinking evolved from his days as a graduate student to his untimely death in 1982. This definitive volume also features Barrett and Byrne's introductory essays, notes, and commentary that put Everett's extraordinary theory into historical and scientific perspective and discuss the puzzles that still remain.
Reversible Circuit Synthesis Time Reduction Based on Subtree-Circuit Mapping
by
Hawash, Amjad
,
Awad, Ahmed
,
Abdalhaq, Baker
in
Analysis
,
binary decision diagram (BDD)
,
Binary trees (Computers)
2020
Several works have been conducted regarding the reduction of the energy consumption in electrical circuits. Reversible circuit synthesis is considered to be one of the major efforts at reducing the amount of power consumption. The field of reversible circuit synthesis uses a large number of proposed algorithms to minimize the overall cost of circuits synthesis (represented in the line number and quantum cost), with minimal concern paid for synthesis time. However, because of the iterative nature of the synthesis optimization algorithms, synthesis time cannot be neglected as a parameter which needs to be tackled, especially for large-scale circuits which need to be realized by cascades of reversible gates. Reducing the synthesis cost can be achieved by Binary Decision Diagrams (BDDs), which are considered to be a step forward in this field. Nevertheless, the mapping of each BDD node into a cascade of reversible gates during the synthesis process is time-consuming. In this work, we implement the idea of the subtree-based mapping of BDD nodes to reversible gates instead of the classical nodal-based algorithm to effectively reduce the entire reversible circuit synthesis time. Considering Depth-First Search (DFS), we convert an entire BDD subtree in one step into a cascade of reversible gates. A look-up table for all possible combinations of subtrees and their corresponding reversible gates has been constructed, in which a hash key is used to directly access subtrees during the mapping process. This table is constructed as a result of a comprehensive study of all possible BDD subtrees and considered as a reference during the conversion process. The conducted experimental tests show a significant synthesis time reduction (around 95% on average), preserving the correctness of the algorithm in generating a circuit realizing the required Boolean function.
Journal Article
Nonnegative and compartmental dynamical systems
by
Hui, Qing
,
Haddad, Wassim M
,
Chellaboina, VijaySekhar
in
A priori probability
,
Adaptive control
,
Amplitude
2010
This comprehensive book provides the first unified framework for stability and dissipativity analysis and control design for nonnegative and compartmental dynamical systems, which play a key role in a wide range of fields, including engineering, thermal sciences, biology, ecology, economics, genetics, chemistry, medicine, and sociology. Using the highest standards of exposition and rigor, the authors explain these systems and advance the state of the art in their analysis and active control design.
Nonnegative and Compartmental Dynamical Systemspresents the most complete treatment available of system solution properties, Lyapunov stability analysis, dissipativity theory, and optimal and adaptive control for these systems, addressing continuous-time, discrete-time, and hybrid nonnegative system theory. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers, as well as for researchers and graduate students who want to understand the behavior of nonnegative and compartmental dynamical systems that arise in areas such as biomedicine, demographics, epidemiology, pharmacology, telecommunications, transportation, thermodynamics, networks, heat transfer, and power systems.
The Law of Entropy Increase and the Meissner Effect
2022
The law of entropy increase postulates the existence of irreversible processes in physics: the total entropy of an isolated system can increase, but cannot decrease. The annihilation of an electric current in normal metal with the generation of Joule heat because of a non-zero resistance is a well-known example of an irreversible process. The persistent current, an undamped electric current observed in a superconductor, annihilates after the transition into the normal state. Therefore, this transition was considered as an irreversible thermodynamic process before 1933. However, if this transition is irreversible, then the Meissner effect discovered in 1933 is experimental evidence of a process reverse to the irreversible process. Belief in the law of entropy increase forced physicists to change their understanding of the superconducting transition, which is considered a phase transition after 1933. This change has resulted to the internal inconsistency of the conventional theory of superconductivity, which is created within the framework of reversible thermodynamics, but predicts Joule heating. The persistent current annihilates after the transition into the normal state with the generation of Joule heat and reappears during the return to the superconducting state according to this theory and contrary to the law of entropy increase. The success of the conventional theory of superconductivity forces us to consider the validity of belief in the law of entropy increase.
Journal Article
Thermodynamics
by
Haddad, Wassim M
,
Nersesov, Sergey G
,
Chellaboina, VijaySekhar
in
Available energy (particle collision)
,
Axiom
,
Balance equation
2009,2005
This book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exposition and rigor, the authors develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale dynamical system models that bridge the gap between classical and statistical thermodynamics.
The authors' theory is motivated by the fact that a discipline as cardinal as thermodynamics--entrusted with some of the most perplexing secrets of our universe--demands far more than physical mathematics as its underpinning. Even though many great physicists, such as Archimedes, Newton, and Lagrange, have humbled us with their mathematically seamless eurekas over the centuries, this book suggests that a great many physicists and engineers who have developed the theory of thermodynamics seem to have forgotten that mathematics, when used rigorously, is the irrefutable pathway to truth.
This book uses system theoretic ideas to bring coherence, clarity, and precision to an extremely important and poorly understood classical area of science.
The Principle of Least Action for Reversible Thermodynamic Processes and Cycles
2018
The principle of least action, which is usually applied to natural phenomena, can also be used in optimization problems with manual intervention. Following a brief introduction to the brachistochrone problem in classical mechanics, the principle of least action was applied to the optimization of reversible thermodynamic processes and cycles in this study. Analyses indicated that the entropy variation per unit of heat exchanged is the mode of action for reversible heat absorption or heat release processes. Minimizing this action led to the optimization of heat absorption or heat release processes, and the corresponding optimal path was the first or second half of a Carnot cycle. Finally, the action of an entire reversible thermodynamic cycle was determined as the sum of the actions of the heat absorption and release processes. Minimizing this action led to a Carnot cycle. This implies that the Carnot cycle can also be derived using the principle of least action derived from the entropy concept.
Journal Article
Reply to the Comments on: Tian Zhao et al. The Principle of Least Action for Reversible Thermodynamic Processes and Cycles. Entropy 2018, 20, 542
by
Hua, Yu-Chao
,
Zhao, Tian
,
Guo, Zeng-Yuan
in
Carnot cycle
,
Conflicts of interest
,
Direct reduction
2018
The purpose of this reply is to provide a discussion and closure for the comment paper by Dr. Bormashenko on the present authors’ article, which discussed the application of the principle of least action in reversible thermodynamic processes and cycles. Dr. Bormashenko’s questions and misunderstandings are responded to, and the differences between the present authors’ work and Lucia’s are also presented.
Journal Article