Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
24,527
result(s) for
"Review Paper"
Sort by:
Feeding the world
by
Raines, Christine A.
,
López-Calcagno, Patricia E.
,
Simkin, Andrew J.
in
Calvin cycle
,
Crop Production - methods
,
crops
2019
A number of recent studies have provided strong support demonstrating that improving the photosynthetic processes through genetic engineering can provide an avenue to improve yield potential. The major focus of this review is on improvement of the Calvin–Benson cycle and electron transport. Consideration is also given to how altering regulatory process may provide an additional route to increase photosynthetic efficiency. Here we summarize some of the recent successes that have been observed through genetic manipulation of photosynthesis, showing that, in both the glasshouse and the field, yield can be increased by >40%. These results provide a clear demonstration of the potential for increasing yield through improvements in photosynthesis. In the final section, we consider the need to stack improvement in photosynthetic traits with traits that target the yield gap in order to provide robust germplasm for different crops across the globe.
Journal Article
Nitric oxide molecular targets
by
Fernández-Espinosa, María Guadalupe
,
Sánchez-Vicente, Inmaculada
,
Lorenzo, Oscar
in
REVIEW PAPER
,
Review Papers
2019
Plants are sessile organisms that need to complete their life cycle by the integration of different abiotic and biotic environmental signals, tailoring developmental cues and defense concomitantly. Commonly, stress responses are detrimental to plant growth and, despite the fact that intensive efforts have been made to understand both plant development and defense separately, most of the molecular basis of this trade-off remains elusive. To cope with such a diverse range of processes, plants have developed several strategies including the precise balance of key plant growth and stress regulators [i.e. phytohormones, reactive nitrogen species (RNS), and reactive oxygen species (ROS)]. Among RNS, nitric oxide (NO) is a ubiquitous gasotransmitter involved in redox homeostasis that regulates specific checkpoints to control the switch between development and stress, mainly by post-translational protein modifications comprising S-nitrosation of cysteine residues and metals, and nitration of tyrosine residues. In this review, we have sought to compile those known NO molecular targets able to balance the crossroads between plant development and stress, with special emphasis on the metabolism, perception, and signaling of the phytohormones abscisic acid and salicylic acid during abiotic and biotic stress responses.
Journal Article
Integration of sulfate assimilation with carbon and nitrogen metabolism in transition from C₃ to C₄ photosynthesis
by
Karvansara, Parisa Rahimzadeh
,
Jobe, Timothy O.
,
Kopriva, Stanislav
in
REVIEW PAPER
,
Review Papers
2019
The first product of sulfate assimilation in plants, cysteine, is a proteinogenic amino acid and a source of reduced sulfur for plant metabolism. Cysteine synthesis is the convergence point of the three major pathways of primary metabolism: carbon, nitrate, and sulfate assimilation. Despite the importance of metabolic and genetic coordination of these three pathways for nutrient balance in plants, the molecular mechanisms underlying this coordination, and the sensors and signals, are far from being understood. This is even more apparent in C₄ plants, where coordination of these pathways for cysteine synthesis includes the additional challenge of differential spatial localization. Here we review the coordination of sulfate, nitrate, and carbon assimilation, and show how they are altered in C₄ plants. We then summarize current knowledge of the mechanisms of coordination of these pathways. Finally, we identify urgent questions to be addressed in order to understand the integration of sulfate assimilation with carbon and nitrogen metabolism particularly in C₄ plants. We consider answering these questions to be a prerequisite for successful engineering of C₄ photosynthesis into C₃ crops to increase their efficiency.
Journal Article
Sulfated plant peptide hormones
2019
Sulfated peptides are plant hormones that are active at nanomolar concentrations. The sulfation at one or more tyrosine residues is catalysed by tyrosylprotein sulfotransferase (TPST), which is encoded by a single-copy gene. The sulfate group is provided by the co-substrate 3′-phosphoadenosine 5′-phosphosulfate (PAPS), which links synthesis of sulfated signaling peptides to sulfur metabolism. The precursor proteins share a conserved DY-motif that is implicated in specifying tyrosine sulfation. Several sulfated peptides undergo additional modification such as hydroxylation of proline and glycosylation of hydroxyproline. The modifications render the secreted signaling molecules active and stable. Several sulfated signaling peptides have been shown to be perceived by leucine-rich repeat receptor-like kinases (LRR-RLKs) but have signaling pathways that, for the most part, are yet to be elucidated. Sulfated peptide hormones regulate growth and a wide variety of developmental processes, and intricately modulate immunity to pathogens. While basic research on sulfated peptides has made steady progress, their potential in agricultural and pharmaceutical applications has yet to be explored.
Journal Article
The plant Mediator complex and its role in jasmonate signaling
2019
The Mediator complex is an essential, multisubunit transcriptional coactivator that is highly conserved in eukaryotes. Mediator interacts with gene-specific transcription factors, the RNA polymerase II transcriptional machinery, as well as several other factors involved in transcription, and acts as an integral hub to regulate various aspects of transcription. Recent studies of the plant Mediator complex have established that it functions in diverse aspects of plant development and fitness. Jasmonate (JA) is an oxylipin-derived plant hormone that regulates plant immunity and development. The basic helix–loop–helix transcription factor MYC2, which is a master regulator of JA signaling, orchestrates genome-wide transcriptional reprogramming of plant cells to coordinate defense- and growth-related processes. Here, we review the function of the plant Mediator complex in regulating JA signaling. We focus on the multifunctional Mediator subunit MED25, which emerges as an integrative hub for the transcriptional regulation of jasmonate signaling.
Journal Article
Integration of nutrient, energy, light, and hormone signalling via TOR in plants
2019
The multidomain target of rapamycin (TOR) is an atypical serine/threonine protein kinase resembling phosphatidylinositol lipid kinases, but retains high sequence identity and serves a remarkably conserved role as a master signalling integrator in yeasts, plants, and humans. TOR dynamically orchestrates cell metabolism, biogenesis, organ growth, and development transitions in response to nutrient, energy, hormone, and environmental cues. Here we review recent findings on the versatile and complex roles of TOR in transcriptome reprogramming, seedling, root, and shoot growth, and root hair production activated by sugar and energy signalling. We explore how co-ordination of TOR-mediated light and hormone signalling is involved in root and shoot apical meristem activation, proliferation of leaf primordia, cotyledon/leaf greening, and hypocotyl elongation. We also discuss the emerging TOR functions in response to sulfur assimilation and metabolism and consider potential molecular links and positive feedback loops between TOR, sugar, energy, and other essential macronutrients.
Journal Article
Current approaches to measure nitric oxide in plants
2019
Nitric oxide (NO) is now established as an important signalling molecule in plants where it influences growth, development, and responses to stress. Despite extensive research, the most appropriate methods to measure and localize these signalling radicals are debated and still need investigation. Many confounding factors such as the presence of other reactive intermediates, scavenging enzymes, and compartmentation influence how accurately each can be measured. Further, these signalling radicals have short half-lives ranging from seconds to minutes based on the cellular redox condition. Hence, it is necessary to use sensitive and specific methods in order to understand the contribution of each signalling molecule to various biological processes. In this review, we summarize the current knowledge on NO measurement in plant samples, via various methods. We also discuss advantages, limitations, and wider applications of each method.
Journal Article
New beginnings and new ends
by
Huesgen, Pitter F.
,
Dissmeyer, Nico
,
Perrar, Andreas
in
amino acids
,
enzyme substrates
,
enzymes
2019
Dynamic regulation of protein function and abundance plays an important role in virtually every aspect of plant life. Diversifying mechanisms at the RNA and protein level result in many protein molecules with distinct sequence and modification, termed proteoforms, arising from a single gene. Distinct protein termini define proteoforms arising from translation of alternative transcripts, use of alternative translation initiation sites, and different co- and post-translational modifications of the protein termini. Also site-specific proteolytic processing by endo- and exoproteases generates truncated proteoforms, defined by distinct protease-generated neo-N- and neo-C-termini, that may exhibit altered activity, function, and localization compared with their precursor proteins. In eukaryotes, the N-degron pathway targets cytosolic proteins, exposing destabilizing N-terminal amino acids and/or destabilizing N-terminal modifications for proteasomal degradation. This enables rapid and selective removal not only of unfolded proteins, but also of substrate proteoforms generated by proteolytic processing or changes in N-terminal modifications. Here we summarize current protocols enabling proteome-wide analysis of protein termini, which have provided important new insights into N-terminal modifications and protein stability determinants, protein maturation pathways, and protease–substrate relationships in plants.
Journal Article
Measurement accuracy and uncertainty in plant biomechanics
2019
All scientific measurements are affected to some degree by both systematic and random errors. The quantification of these errors supports correct interpretation of data, thus supporting scientific progress. Absence of information regarding reliability and accuracy can slow scientific progress, and can lead to a reproducibility crisis. Here we consider both measurement theory and plant biomechanics literature. Drawing from measurement theory literature, we review techniques for assessing both the accuracy and uncertainty of a measurement process. In our survey of plant biomechanics literature, we found that direct assessment of measurement accuracy and uncertainty is not yet common. The advantages and disadvantages of efforts to quantify measurement accuracy and uncertainty are discussed. We conclude with recommended best practices for improving the scientific rigor in plant biomechanics through attention to the issues of measurement accuracy and uncertainty.
Journal Article
Linking genes with ecological strategies in Arabidopsis thaliana
by
Takou, Margarita
,
Wieters, Benedict
,
Kopriva, Stanislav
in
Adaptation, Biological
,
Arabidopsis - genetics
,
Arabidopsis - physiology
2019
Arabidopsis thaliana is the most prominent model system in plant molecular biology and genetics. Although its ecology was initially neglected, collections of various genotypes revealed a complex population structure, with high levels of genetic diversity and substantial levels of phenotypic variation. This helped identify the genes and gene pathways mediating phenotypic change. Population genetics studies further demonstrated that this variation generally contributes to local adaptation. Here, we review evidence showing that traits affecting plant life history, growth rate, and stress reactions are not only locally adapted, they also often co-vary. Co-variation between these traits indicates that they evolve as trait syndromes, and reveals the ecological diversification that took place within A. thaliana. We argue that examining traits and the gene that control them within the context of global summary schemes that describe major ecological strategies will contribute to resolve important questions in both molecular biology and ecology.
Journal Article