Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
303
result(s) for
"Ribonuclease III - physiology"
Sort by:
Functional and Genetic Analysis Identify a Role for Arabidopsis ARGONAUTE5 in Antiviral RNA Silencing
2015
RNA silencing functions as an antiviral defense through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. In turn, plant viruses have evolved strategies to counteract this defense mechanism, including the expression of suppressors of RNA silencing. Potato virus X (PVX) does not systemically infect Arabidopsis thaliana Columbia-0, but is able to do so effectively in mutants lacking at least two of the four Arabidopsis DCL proteins. PVX can also infect Arabidopsis ago2 mutants, albeit less effectively than double DCL mutants, suggesting that additional AGO proteins may mediate anti-viral defenses. Here we show, using functional assays, that all Arabidopsis AGO proteins have the potential to target PVX lacking its viral suppressor of RNA silencing (VSR), P25, but that only AGO2 and AGO5 are able to target wild-type PVX. However, P25 directly affects only a small subset of AGO proteins, and we present evidence indicating that its protective effect is mediated by precluding AGO proteins from accessing viral RNA, as well as by directly inhibiting the RNA silencing machinery. In agreement with functional assays, we show that Potexvirus infection induces AGO5 expression and that both AGO2 and AGO5 are required for full restriction of PVX infection in systemic tissues of Arabidopsis.
Journal Article
Human nuclear Dicer restricts the deleterious accumulation of endogenous double-stranded RNA
2014
Proudfoot, Gullerova and colleagues show that mammalian Dicer localizes to the nucleus, where its levels are tightly regulated. Dicer interacts with RNA polymerase II and seems to restrict double-stranded (ds) RNA formation from convergent transcription. Dicer knockdown leads to accumulation of dsRNA, triggering the interferon response pathway and cellular apoptosis.
Dicer is a central enzymatic player in RNA-interference pathways that acts to regulate gene expression in nearly all eukaryotes. Although the cytoplasmic function of Dicer is well documented in mammals, its nuclear function remains obscure. Here we show that Dicer is present in both the nucleus and cytoplasm, and its nuclear levels are tightly regulated. Dicer interacts with RNA polymerase II (Pol II) at actively transcribed gene loci. Loss of Dicer causes the appearance of endogenous double-stranded RNA (dsRNA), which in turn leads to induction of the interferon-response pathway and consequent cell death. Our results suggest that Pol II–associated Dicer restricts endogenous dsRNA formation from overlapping noncoding-RNA transcription units. Failure to do so has catastrophic effects on cell function.
Journal Article
Homeostatic control of Argonaute stability by microRNA availability
by
Lai, Eric C
,
Liu, Ji-Long
,
Azzam, Ghows
in
631/337/505
,
Animals
,
Argonaute Proteins - genetics
2013
Argonaute proteins are essential for miRNA function. Now a study in fly and mammalian systems shows that miRNA availability has an effect on the steady-state levels of Argonaute proteins. Argonaute is degraded by the ubiquitin-proteasome pathway, and increased miRNA levels lead to stabilization and accumulation of Argonaute.
Homeostatic mechanisms regulate the abundance of several components in small-RNA pathways. We used
Drosophila
and mammalian systems to demonstrate a conserved homeostatic system in which the status of miRNA biogenesis controls Argonaute protein stability. Clonal analyses of multiple mutants of core
Drosophila
miRNA factors revealed that stability of the miRNA effector AGO1 is dependent on miRNA biogenesis. Reciprocally, ectopic transcription of miRNAs within
in vivo
clones induced accumulation of AGO1, as did genetic interference with the ubiquitin-proteasome system. In mouse cells, we found that the stability of Ago2 declined in
Dicer
-knockout cells and was rescued by proteasome blockade or introduction of either
Dicer
plasmid or Dicer-independent miRNA constructs. Notably, Dicer-dependent miRNA constructs generated pre-miRNAs that bound Ago2 but did not rescue Ago2 stability. We conclude that Argonaute levels are finely tuned by cellular availability of mature miRNAs and the ubiquitin-proteasome system.
Journal Article
Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs
2014
Chang and colleagues report the involvement of a Dicer-microRNA-cMyc signaling axis in the transcriptional regulation of a large set of long noncoding RNAs (lncRNAs). These lncRNAs are specifically dependent on cMyc, as compared to divergently transcribed protein-coding genes.
Long noncoding RNAs (lncRNAs) are important regulators of cell fate, yet little is known about mechanisms controlling lncRNA expression. Here we show that transcription is quantitatively different for lncRNAs and mRNAs—as revealed by deficiency of Dicer (Dcr), a key RNase that generates microRNAs (miRNAs). Dcr loss in mouse embryonic stem cells led unexpectedly to decreased levels of hundreds of lncRNAs. The canonical Dgcr8-Dcr-miRNA pathway is required for robust lncRNA transcriptional initiation and elongation. Computational and genetic epistasis analyses demonstrated that Dcr activation of the oncogenic transcription factor cMyc is partly responsible for lncRNA expression. A quantitative metric of mRNA-lncRNA decoupling revealed that Dcr and cMyc differentially regulate lncRNAs versus mRNAs in diverse cell types and
in vivo
. Thus, numerous lncRNAs may be modulated as a class in development and disease, notably where Dcr and cMyc act.
Journal Article
Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure
by
Hammond, Scott M
,
Chen, Jian-Fu
,
Rojas, Mauricio
in
Animals
,
Biological Sciences
,
Blotting, Northern
2008
Cardiovascular disease is the leading cause of human morbidity and mortality. Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy associated with heart failure. Here, we report that cardiac-specific knockout of Dicer, a gene encoding a RNase III endonuclease essential for microRNA (miRNA) processing, leads to rapidly progressive DCM, heart failure, and postnatal lethality. Dicer mutant mice show misexpression of cardiac contractile proteins and profound sarcomere disarray. Functional analyses indicate significantly reduced heart rates and decreased fractional shortening of Dicer mutant hearts. Consistent with the role of Dicer in animal hearts, Dicer expression was decreased in end-stage human DCM and failing hearts and, most importantly, a significant increase of Dicer expression was observed in those hearts after left ventricle assist devices were inserted to improve cardiac function. Together, our studies demonstrate essential roles for Dicer in cardiac contraction and indicate that miRNAs play critical roles in normal cardiac function and under pathological conditions.
Journal Article
An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs
by
Lauressergues, Dominique
,
Gasciolli, Virginie
,
Bouché, Nicolas
in
Arabidopsis
,
Arabidopsis - enzymology
,
Arabidopsis - genetics
2006
Plants contain more DICER‐LIKE (DCL) enzymes and double‐stranded RNA binding (DRB) proteins than other eukaryotes, resulting in increased small RNA network complexities. Analyses of single, double, triple and quadruple
dcl
mutants exposed DCL1 as a sophisticated enzyme capable of producing both microRNAs (miRNAs) and siRNAs, unlike the three other DCLs, which only produce siRNAs. Depletion of siRNA‐specific DCLs results in unbalanced small RNA levels, indicating a redeployment of DCL/DRB complexes. In particular, DCL2 antagonizes the production of miRNAs and siRNAs by DCL1 in certain circumstances and affects development deleteriously in
dcl1 dcl4
and
dcl1 dcl3 dcl4
mutant plants, whereas
dcl1 dcl2 dcl3 dcl4
quadruple mutant plants are viable. We also show that viral siRNAs are produced by DCL4, and that DCL2 can substitute for DCL4 when this latter activity is reduced or inhibited by viruses, pointing to the competitiveness of DCL2. Given the complexity of the small RNA repertoire in plants, the implication of each DCL, in particular DCL2, in the production of small RNAs that have no known function will constitute one of the next challenges.
Journal Article
Role of miR-21 in the pathogenesis of atrial fibrosis
by
Schäfers, Hans-Joachim
,
Thum, Thomas
,
Gupta, Shashi K.
in
Angiotensin II - pharmacology
,
Animals
,
Cardiology
2012
Atrial fibrosis is important for the pathogenesis of atrial fibrillation (AF) but the underlying signal transduction is incompletely understood. We therefore studied the role of microRNA-21 (miR-21) and its downstream target Sprouty 1 (Spry1) during atrial fibrillation. Left atria (LA) from patients with AF showed a 2.5-fold increased expression of miR-21 compared to matched LA of patients in sinus rhythm. Increased miR-21 expression correlated positively with atrial collagen content and was associated with a reduced protein expression of Spry1 and increased expression of connective tissue growth factor (CTGF), lysyl oxidase and Rac1-GTPase. Neonatal cardiac fibroblasts treated with angiotensin II (AngII) or CTGF showed an increased miR-21 and decreased Spry1 expression. Pretreatment with an inhibitor of Rac1 GTPase, NSC23766, reduced the AngII-induced upregulation of miR-21. A small molecule inhibitor of lysyl oxidase, BAPN, prevented the AngII as well as the CTGF-induced miR-21 expression. Transgenic mice with cardiac overexpression of Rac1, which develop spontaneous AF and atrial fibrosis with increasing age, showed upregulation of miR-21 expression associated with reduced Spry1 expression. miR-21 expression and signalling in vivo were prevented by long-term treatment of the mice with statins. Direct inhibition of miR-21 by antagomir-21 prevented fibrosis of the atrial myocardium post-myocardial infarction. Left atria of patients with atrial fibrillation are characterized by upregulation of miR-21 und reduced expression of Spry1. Activation of Rac1 by angiotensin II leads to a CTGF- and lysyl oxidase-mediated increase of miR-21 expression contributing to structural remodelling of the atrial myocardium.
Journal Article
The RNaseIII Enzyme Dicer Is Required for Morphogenesis but Not Patterning of the Vertebrate Limb
by
Leder, Philip
,
Mansfield, Jennifer H.
,
McManus, Michael T.
in
Alleles
,
Animals
,
Base Sequence
2005
The RNaseIII-containing enzyme Dicer is believed to be required for the processing of most, if not all, microRNAs (miRNAs) and for processing long dsRNA into small interfering RNAs. Because the complete loss of Dicer in both zebrafish and mice results in early embryonic lethality, it has been impossible to determine what role, if any, Dicer has in patterning later tissues in the developing vertebrate embryo. To bypass the early requirement of Dicer in development, we have created a conditional allele of this gene in mice. Using transgenes to drive Cre expression in discrete regions of the limb mesoderm, we find that removal of Dicer results in the loss of processed miRNAs. Phenotypically, developmental delays, in part due to massive cell death as well as disregulation of specific gene expression, lead to the formation of a much smaller limb. Thus, Dicer is required for the formation of normal mouse limbs. Strikingly, however, we did not detect defects in basic patterning or in tissue-specific differentiation of Dicer-deficient limb buds.
Journal Article
Phosphate-binding pocket in Dicer-2 PAZ domain for high-fidelity siRNA production
2016
The enzyme Dicer produces small silencing RNAs such as micro- RNAs (miRNAs) and small interfering RNAs (siRNAs). In Drosophila, Dicer-1 produces ∼22–24-nt miRNAs from pre-miRNAs, whereas Dicer-2makes 21-nt siRNAs from long double-stranded RNAs (dsRNAs). How Dicer-2 precisely makes 21-nt siRNAs with a remarkably high fidelity is unknown. Here we report that recognition of the 5′-monophosphate of a long dsRNA substrate by a phosphate-binding pocket in the Dicer-2 PAZ (Piwi, Argonaute, and Zwille/Pinhead) domain is crucial for the length fidelity, but not the efficiency, in 21-nt siRNA production. Loss of the length fidelity, meaning increased length heterogeneity of siRNAs, caused by point mutations in the phosphate-binding pocket of the Dicer-2 PAZ domain decreased RNA silencing activity in vivo, showing the importance of the high fidelity to make 21-nt siRNAs. We propose that the 5′-monophosphate of a long dsRNA substrate is anchored by the phosphatebinding pocket in the Dicer-2 PAZ domain and the distance between the pocket and the RNA cleavage active site in the RNaseIII domain corresponds to the 21-nt pitch in the A-form duplex of a long dsRNA substrate, resulting in high-fidelity 21-nt siRNA production. This study sheds light on the molecular mechanism by which Dicer-2 produces 21-nt siRNAs with a remarkably high fidelity for efficient RNA silencing.
Journal Article
Dicer-dependent pathways regulate chondrocyte proliferation and differentiation
by
Schipani, Ernestina
,
Kobayashi, Tatsuya
,
Merkenschlager, Matthias
in
Animals
,
Base Sequence
,
biogenesis
2008
Small noncoding RNAs, microRNAs (miRNAs), bind to messenger RNAs through base pairing to suppress gene expression. Despite accumulating evidence that miRNAs play critical roles in various biological processes across diverse organisms, their roles in mammalian skeletal development have not been demonstrated. Here, we show that Dicer, an essential component for biogenesis of miRNAs, is essential for normal skeletal development. Dicer-null growth plates show a progressive reduction in the proliferating pool of chondrocytes, leading to severe skeletal growth defects and premature death of mice. The reduction of proliferating chondrocytes in Dicer-null growth plates is caused by two distinct mechanisms: decreased chondrocyte proliferation and accelerated differentiation into postmitotic hypertrophic chondrocytes. These defects appear to be caused by mechanisms downstream or independent of the Ihh-PTHrP signaling pathway, a pivotal signaling system that regulates chondrocyte proliferation and differentiation. Microarray analysis of Dicer-null chondrocytes showed limited expression changes in miRNA-target genes, suggesting that, in the majority of cases, chondrocytic miRNAs do not directly regulate target RNA abundance. Our results demonstrate the critical role of the Dicer-dependent pathway in the regulation of chondrocyte proliferation and differentiation during skeletal development.
Journal Article