Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
671
result(s) for
"Ribonuclease inhibitors"
Sort by:
Engineering Human Pancreatic RNase 1 as an Immunotherapeutic Agent for Cancer Therapy Through Computational and Experimental Studies
by
Ghovvati, Shahrokh
,
Gharouni, Marzieh
,
Tahmoorespur, Mojtaba
in
Cancer
,
Cancer therapies
,
Catalytic activity
2024
Most plant and bacterial toxins are highly immunogenic with non-specific toxic effects. Human ribonucleases are thought to provide a promising basis for reducing the toxic agent’s immunogenic properties, which are candidates for cancer therapy. In the cell, the ribonuclease inhibitor (RI) protein binds to the ribonuclease enzyme and forms a tight complex. This study aimed to engineer and provide a gene construct encoding an improved version of Human Pancreatic RNase 1 (HP-RNase 1) to reduce connection to RI and modulate the immunogenic effects of immunotoxins. To further characterize the interaction complex of HP-RNase 1 and RI, we established various in silico and in vitro approaches. These methods allowed us to specifically monitor interactions within native and engineered HP-RNase 1/RI complexes. In silico research involved molecular dynamics (MD) simulations of native and mutant HP-RNase 1 in their free form and when bound to RI. For HP-RNase 1 engineering, we designed five mutations (K8A/N72A/N89A/R92D/E112/A) based on literature studies, as this combination proved effective for the intended investigation. Then, the cDNA encoding HP-RNase 1 was generated by RT-PCR from blood and cloned into the pSYN2 expression vector. Consequently, wild-type and the engineered HP-RNase 1 were over-expressed in E. coli TG1 and purified using an IMAC column directed against a poly-his tag. The protein products were detected by SDS–PAGE and Western blot analysis. HP-RNase 1 catalytic activity, in the presence of various concentrations of RI, demonstrated that the mutated version of the protein is able to escape the ribonuclease inhibitor and target the RNA substrate 2.5 folds more than that of the wild type. From these data, we tend to suggest the engineered recombinant HP-RNase 1 potentially as a new immunotherapeutic agent for application in human cancer therapy.
Journal Article
Ribonuclease inhibitor 1 emerges as a potential biomarker and modulates inflammation and iron homeostasis in sepsis
by
Zechendorf, Elisabeth
,
Singendonk, Tobias
,
Neu, Carolina
in
631/250/256/1980
,
692/53/2422
,
Aged
2024
Sepsis, marked by organ dysfunction, necessitates reliable biomarkers. Ribonuclease inhibitor 1 (RNH1), a ribonuclease (RNase) inhibitor, emerged as a potential biomarker for acute kidney injury and mortality in thoracoabdominal aortic aneurysm patients. Our study investigates RNH1 dynamics in sepsis, its links to mortality and organ dysfunction, and the interplay with RNase 1 and RNase 5. Furthermore, we explore RNH1 as a therapeutic target in sepsis-related processes like inflammation, non-canonical inflammasome activation, and iron homeostasis. We showed that RNH1 levels are significantly higher in deceased patients compared to sepsis survivors and correlate with creatine kinase, aspartate and alanine transaminase, bilirubin, serum creatinine and RNase 5, but not RNase 1. RNH1 mitigated LPS-induced TNFα and RNase 5 secretion, and relative mRNA expression of ferroptosis-associated genes HMOX1, FTH1 and HAMP in PBMCs. Monocytes were identified as the predominant type of LPS-positive PBMCs. Exogenous RNH1 attenuated LPS-induced CASP5 expression, while increasing IL-1β secretion in PBMCs and THP-1 macrophages. As RNH1 has contradictory effects on inflammation and non-canonical inflammasome activation, its use as a therapeutic agent is limited. However, RNH1 levels may play a central role in iron homeostasis during sepsis, supporting our clinical observations. Hence, RNH1 shows promise as biomarkers for renal and hepatic dysfunction and hepatocyte injury, and may be useful in predicting the outcome of septic patients.
Journal Article
Ribonuclease Inhibitor 1 (RNH1) Regulates Sperm tsRNA Generation for Paternal Inheritance through Interacting with Angiogenin in the Caput Epididymis
2024
Environmental stressors can induce paternal epigenetic modifications that are a key determinant of the intergenerational inheritance of acquired phenotypes in mammals. Some of them can affect phenotypic expression through inducing changes in tRNA-derived small RNAs (tsRNAs), which modify paternal epigenetic regulation in sperm. However, it is unclear how these stressors can affect changes in the expression levels of tsRNAs and their related endonucleases in the male reproductive organs. We found that Ribonuclease inhibitor 1 (RNH1), an oxidation responder, interacts with ANG to regulate sperm tsRNA generation in the mouse caput epididymis. On the other hand, inflammation and oxidative stress induced by either lipopolysaccharide (LPS) or palmitate (PA) treatments weakened the RNH1-ANG interaction in the epididymal epithelial cells (EEC). Accordingly, ANG translocation increased from the nucleus to the cytoplasm, which led to ANG upregulation and increases in cytoplasmic tsRNA expression levels. In conclusion, as an antioxidant, RNH1 regulates tsRNA generation through targeting ANG in the mouse caput epididymis. Moreover, the tsRNA is an epigenetic factor in sperm that modulates paternal inheritance in offspring via the fertilization process.
Journal Article
Overexpression of ribonuclease inhibitor induces autophagy in human colorectal cancer cells via the Akt/mTOR/ULK1 pathway
2019
Ribonuclease inhibitor (RI), also termed angiogenin inhibitor, acts as the inhibitor of ribonucleolytic activity of RNase A and angiogenin. The expression of RI has been investigated in melanoma and bladder cancer cells. However, the precise role of RI in tumorigenesis, in addition to RI-induced autophagy, remains poorly understood. In the present study, it was demonstrated that RI positively regulated autophagy in human colorectal cancer (CRC) cells as indicated by an increase in light chain 3 (LC3)-II levels. Furthermore, RI regulated cell survival in HT29 cells. In addition, autophagy-associated proteins, including beclin-1 and autophagy-related protein 13, were increased in response to RI-induced autophagy, and the protein kinase B (Akt)/mechanistic target of rapamycin (mTOR)/Unc-51 like autophagy activating kinase (ULK1) pathway may be involved in the activation of autophagy induced by RI overexpression. Taken together, the evidence of the present study indicated that the overexpression of RI induced ATG-dependent autophagy in CRC cells via the Akt/mTOR/ULK1 pathway, suggesting that the upregulation of RI activity may constitute a novel approach for the treatment of human colorectal carcinoma.
Journal Article
Robust Recombinant Expression of Human Placental Ribonuclease Inhibitor in Insect Cells
by
Lőrincz, Zsolt
,
Flachner, Beáta
,
Cseh, Sándor
in
Animals
,
baculovirus-insect expression system
,
Cell culture
2022
Ribonuclease inhibitors (RIs) are an indispensable biotechnological tool for the detection and manipulation of RNA. Nowadays, due to the outbreak of COVID-19, highly sensitive detection of RNA has become more important than ever. Although the recombinant expression of RNase inhibitors is possible in E. coli, the robust expression is complicated by maintaining the redox potential and solubility by various expression tags. In the present paper we describe the expression of RI in baculovirus-infected High Five cells in large scale utilizing a modified transfer vector combining the beneficial properties of Profinity Exact Tag and pONE system. The recombinant RI is expressed at a high level in a fusion form, which is readily cleaved during on-column chromatography. A subsequent anion exchange chromatography was used as a polishing step to yield 12 mg native RI per liter of culture. RI expressed in insect cells shows higher thermal stability than the commercially available RI products (mainly produced in E. coli) based on temperature-dependent RNase inhibition studies. The endotoxin-free RI variant may also be applied in future therapeutics as a safe additive to increase mRNA stability in mRNA-based vaccines.
Journal Article
An endogenous ribonuclease inhibitor regulates the antimicrobial activity of ribonuclease 7 in the human urinary tract
2014
Recent studies stress the importance of antimicrobial peptides in protecting the urinary tract from infection. Previously, we have shown that ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that has a broad-spectrum antimicrobial activity against uropathogenic bacteria. The urothelium of the lower urinary tract and intercalated cells of the kidney produce RNase 7, but regulation of its antimicrobial activity has not been well defined. Here, we characterize the expression of an endogenous inhibitor, ribonuclease inhibitor (RI), in the urinary tract and evaluate its effect on the antimicrobial activity of RNase 7. Using RNA isolated from non-infected human bladder and kidney tissue, quantitative real-time polymerase chain reaction showed that RNH1, the gene encoding RI, is constitutively expressed throughout the urinary tract. With pyelonephritis, RNH1 expression and RI peptide production significantly decrease. Immunostaining localized RI production to the umbrella cells of the bladder and intercalated cells of the renal collecting tubule. In vitro assays showed that RI bound to RNase 7 and suppressed its antimicrobial activity by blocking its ability to bind the cell wall of uropathogenic bacteria. Thus, these results demonstrate a new immunomodulatory role for RI and identified a unique regulatory pathway that may affect how RNase 7 maintains urinary tract sterility.
Journal Article
Ribonuclease inhibitor 1 (RNH1) deficiency cause congenital cataracts and global developmental delay with infection-induced psychomotor regression and anemia
2023
Ribonuclease inhibitor 1, also known as angiogenin inhibitor 1, encoded by RNH1, is a ubiquitously expressed leucine-rich repeat protein, which is highly conserved in mammalian species. Inactivation of rnh1 in mice causes an embryonically lethal anemia, but the exact biological function of RNH1 in humans remains unknown and no human genetic disease has so far been associated with RNH1. Here, we describe a family with two out of seven siblings affected by a disease characterized by congenital cataract, global developmental delay, myopathy and psychomotor deterioration, seizures and periodic anemia associated with upper respiratory tract infections. A homozygous splice-site variant (c.615-2A > C) in RNH1 segregated with the disease. Sequencing of RNA derived from patient fibroblasts and cDNA analysis of skeletal muscle mRNA showed aberrant splicing with skipping of exon 7. Western blot analysis revealed a total lack of the RNH1 protein. Functional analysis revealed that patient fibroblasts were more sensitive to RNase A exposure, and this phenotype was reversed by transduction with a lentivirus expressing RNH1 to complement patient cells. Our results demonstrate that loss-of-function of RNH1 in humans is associated with a multiorgan developmental disease with recessive inheritance. It may be speculated that the infection-induced deterioration resulted from an increased susceptibility toward extracellular RNases and/or other inflammatory responses normally kept in place by the RNase inhibitor RNH1.
Journal Article
Hierarchical Action and Inhibition of Plant Dicer-Like Proteins in Antiviral Defense
by
Carrington, James C
,
Bao, Jinsong
,
Kasschau, Kristin D
in
Agronomy. Soil science and plant productions
,
Antivirals
,
Arabidopsis
2006
The mechanisms underlying induction and suppression of RNA silencing in the ongoing plant-virus arms race are poorly understood. We show here that virus-derived small RNAs produced by Arabidopsis Dicer-like 4 (DCL4) program an effector complex conferring antiviral immunity. Inhibition of DCL4 by a viral-encoded suppressor revealed the subordinate antiviral activity of DCL2. Accordingly, inactivating both DCL2 and DCL4 was necessary and sufficient to restore systemic infection of a suppressor-deficient virus. The effects of DCL2 were overcome by increasing viral dosage in inoculated leaves, but this could not surmount additional, non-cell autonomous effects of DCL4 specifically preventing viral unloading from the vasculature. These findings define a molecular framework for studying antiviral silencing and defense in plants.
Journal Article
Role of PumB antitoxin as a transcriptional regulator of the PumAB type-II toxin–antitoxin system and its endoribonuclease activity on the PumA (toxin) transcript
by
Hernández-Ramírez, K. C.
,
Valle-Maldonado, M. I.
,
Patiño-Medina, J. A.
in
Animal Genetics and Genomics
,
animal pathogens
,
antitoxins
2023
The PumAB type-II toxin–antitoxin (TA) system is encoded by
pum
AB genes that are organized into an operon. This system is encoded by the pUM505 plasmid, isolated from a
Pseudomonas aeruginosa
clinical strain. The
pum
A gene encodes a putative RelE toxin protein (toxic component), whereas the
pum
B gene encodes a putative HTH antitoxin protein. The expression of the PumAB system in
Escherichia coli
confers plasmid stability. In addition, PumA toxin overexpression in
P. aeruginosa
possesses the capability to increase bacterial virulence, an effect that is neutralized by the PumB antitoxin. The aim of this study was to establish the mechanism of regulation of the PumAB toxin–antitoxin system from pUM505. By an
in silico
analysis of the putative regulatory elements, we identified two putative internal promoters, P
pumB
and P
pumB-AlgU
(in addition to the already reported P
pumAB
), located upstream of
pum
B. By RT-qPCR assays, we determined that the
pum
AB genes are transcribed differentially, in that the mRNA of
pum
B is more abundant than the
pum
A transcript. We also observed that
pum
B could be expressed individually and that its mRNA levels decreased under oxidative stress, during individual expression as well as co-expression of
pum
AB. However, under stressful conditions, the
pum
A mRNA levels were not affected. This suggests the negative regulation of
pum
B by stressful conditions. The PumB purified protein was found to bind to a DNA region located between the P
pumAB
and the
pum
A coding region, and PumA participates in PumB binding, suggesting that a PumA–PumB complex co-regulates the transcription of the
pum
AB operon. Interestingly, the
pum
A mRNA levels decreased after incubation in vitro with PumB protein. This effect was repressed by ribonuclease inhibitors, suggesting that PumB could function as an RNAse toward the mRNA of the toxin. Taken together, we conclude that the PumAB TA system possesses multiple mechanisms to regulate its expression, as well as that the PumB antitoxin generates a decrease in the mRNA toxin levels, suggesting an RNase function. Our analysis provides new insights into the understanding of the control of TA systems from mobile plasmid-encoded genes from a human pathogen.
Journal Article