Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
110,843
result(s) for
"Ribonucleic acid"
Sort by:
Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
2015
The mammalian cerebral cortex supports cognitive functions such as sensorimotor integration, memory, and social behaviors. Normal brain function relies on a diverse set of differentiated cell types, including neurons, glia, and vasculature. Here, we have used large-scale single-cell RNA sequencing (RNA-seq) to classify cells in the mouse somatosensory cortex and hippocampal CA1 region. We found 47 molecularly distinct subclasses, comprising all known major cell types in the cortex. We identified numerous marker genes, which allowed alignment with known cell types, morphology, and location. We found a layer I interneuron expressing Pax6 and a distinct postmitotic oligodendrocyte subclass marked by Itpr2. Across the diversity of cortical cell types, transcription factors formed a complex, layered regulatory code, suggesting a mechanism for the maintenance of adult cell type identity.
Journal Article
piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production
2015
PIWI-interacting RNAs (piRNAs) protect the animal germ line by silencing transposons. Primary piRNAs, generated from transcripts of genomic transposon \"junkyards\" (piRNA clusters), are amplified by the \"ping-pong\" pathway, yielding secondary piRNAs. We report that secondary piRNAs, bound to the PIWI protein Ago3, can initiate primary piRNA production from cleaved transposon RNAs. The first ∼26 nucleotides (nt) of each cleaved RNA becomes a secondary piRNA, but the subsequent ∼26 nt become the first in a series of phased primary piRNAs that bind Piwi, allowing piRNAs to spread beyond the site of RNA cleavage. The ping-pong pathway increases only the abundance of piRNAs, whereas production of phased primary piRNAs from cleaved transposon RNAs adds sequence diversity to the piRNA pool, allowing adaptation to changes in transposon sequence.
Journal Article
A Cas9-guide RNA complex preorganized for target DNA recognition
2015
Bacterial adaptive immunity uses CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR transcripts for foreign DNA degradation. In type II CRISPR-Cas systems, activation of Cas9 endonuclease for DNA recognition upon guide RNA binding occurs by an unknown mechanism. Crystal structures of Cas9 bound to single-guide RNA reveal a conformation distinct from both the apo and DNA-bound states, in which the 10-nucleotide RNA \"seed\" sequence required for initial DNA interrogation is preordered in an A-form conformation. This segment of the guide RNA is essential for Cas9 to form a DNA recognition–competent structure that is poised to engage double-stranded DNA target sequences. We construe this as convergent evolution of a \"seed\" mechanism reminiscent of that used by Argonaute proteins during RNA interference in eukaryotes.
Journal Article
Spatially resolved, highly multiplexed RNA profiling in single cells
2015
Multiplexed RNA imaging in single cellsThe basis of cellular function is where and when proteins are expressed and in what quantities. Single-molecule fluorescence in situ hybridization (smFISH) experiments quantify the copy number and location of mRNA molecules; however, the numbers of RNA species that can be simultaneously measured by smFISH has been limited. Using combinatorial labeling with error-robust encoding schemes, Chen et al. simultaneously imaged 100 to 1000 RNA species in a single cell. Such large-scale detection allows regulatory interactions to be analyzed at the transcriptome scale.Science, this issue p. 10.1126/science.aaa6090 Knowledge of the expression profile and spatial landscape of the transcriptome in individual cells is essential for understanding the rich repertoire of cellular behaviors. Here, we report multiplexed error-robust fluorescence in situ hybridization (MERFISH), a single-molecule imaging approach that allows the copy numbers and spatial localizations of thousands of RNA species to be determined in single cells. Using error-robust encoding schemes to combat single-molecule labeling and detection errors, we demonstrated the imaging of 100 to 1000 distinct RNA species in hundreds of individual cells. Correlation analysis of the ~104 to 106 pairs of genes allowed us to constrain gene regulatory networks, predict novel functions for many unannotated genes, and identify distinct spatial distribution patterns of RNAs that correlate with properties of the encoded proteins.
Journal Article
The human splicing code reveals new insights into the genetic determinants of disease
by
Frey, Brendan J.
,
Lee, Leo J.
,
Blencowe, Benjamin J.
in
Algorithms
,
Autism
,
Autism Spectrum Disorders
2015
Most eukaryotic messenger RNAs (mRNAs) are spliced to remove introns. Splicing generates uninterrupted open reading frames that can be translated into proteins. Splicing is often highly regulated, generating alternative spliced forms that code for variant proteins in different tissues. RNA-binding proteins that bind specific sequences in the mRNA regulate splicing. Xiong et al. develop a computational model that predicts splicing regulation for any mRNA sequence (see the Perspective by Guigó and Valcárcel). They use this to analyze more than half a million mRNA splicing sequence variants in the human genome. They are able to identify thousands of known disease-causing mutations, as well as many new disease candidates, including 17 new autism-linked genes. Science , this issue 10.1126/science.1254806 ; see also p. 124 A model predicts how thousands of disease-linked nucleotide variants affect messenger RNA splicing. [Also see Perspective by Guigó and Valcárcel ] To facilitate precision medicine and whole-genome annotation, we developed a machine-learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of more than 650,000 intronic and exonic variants revealed widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations that are more than 30 nucleotides from any splice site alter splicing nine times as often as common variants, and missense exonic disease mutations that have the least impact on protein function are five times as likely as others to alter splicing. We detected tens of thousands of disease-causing mutations, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole-genome sequencing of individuals with autism revealed misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine.
Journal Article
A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation
2015
Female mammals have two X chromosomes, one of which is almost completely shut down during development. The long noncoding Xist RNA plays a role in this process. To understand how a whole chromosome can be stably inactivated, Minajigi et al. identified many of the proteins that bind to the Xist RNA, which include cohesins. Paradoxically, the interaction between Xist and cohesin subunits resulted in repulsion of cohesin complexes from the inactive X chromosome, changing the three-dimensional shape of the whole chromosome. Science , this issue 10.1126/science.aab2276 A screen for factors that bind directly to RNA reveals the proteins that interact with the long noncoding RNA Xist. The inactive X chromosome (Xi) serves as a model to understand gene silencing on a global scale. Here, we perform “identification of direct RNA interacting proteins” (iDRiP) to isolate a comprehensive protein interactome for Xist, an RNA required for Xi silencing. We discover multiple classes of interactors—including cohesins, condensins, topoisomerases, RNA helicases, chromatin remodelers, and modifiers—that synergistically repress Xi transcription. Inhibiting two or three interactors destabilizes silencing. Although Xist attracts some interactors, it repels architectural factors. Xist evicts cohesins from the Xi and directs an Xi-specific chromosome conformation. Upon deleting Xist , the Xi acquires the cohesin-binding and chromosomal architecture of the active X. Our study unveils many layers of Xi repression and demonstrates a central role for RNA in the topological organization of mammalian chromosomes.
Journal Article
Impact of regulatory variation from RNA to protein
2015
The phenotypic consequences of expression quantitative trait loci (eQTLs) are presumably due to their effects on protein expression levels. Yet the impact of genetic variation, including eQTLs, on protein levels remains poorly understood. To address this, we mapped genetic variants that are associated with eQTLs, ribosome occupancy (rQTLs), or protein abundance (pQTLs). We found that most QTLs are associated with transcript expression levels, with consequent effects on ribosome and protein levels. However, eQTLs tend to have significantly reduced effect sizes on protein levels, which suggests that their potential impact on downstream phenotypes is often attenuated or buffered. Additionally, we identified a class of eis QTLs that affect protein abundance with little or no effect on messenger RNA or ribosome levels, which suggests that they may arise from differences in posttranslational regulation.
Journal Article
Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids
2015
Double-stranded RNAs (dsRNAs) targeted against essential genes can trigger a lethal RNA interference (RNAi) response in insect pests. The application of this concept in plant protection is hampered by the presence of an endogenous plant RNAi pathway that processes dsRNAs into short interfering RNAs. We found that long dsRNAs can be stably produced in chloroplasts, a cellular compartment that appears to lack an RNAi machinery. When expressed from the chloroplast genome, dsRNAs accumulated to as much as 0.4% of the total cellular RNA.Transplastomic potato plants producing dsRNAs targeted against the β-actin gene of the Colorado potato beetle, a notorious agricultural pest, were protected from herbivory and were lethal to its larvae. Thus, chloroplast expression of long dsRNAs can provide crop protection without chemical pesticides.
Journal Article
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
by
Severinov, Konstantin
,
Konermann, Silvana
,
Koonin, Eugene V.
in
Adaptive Immunity - genetics
,
Adaptive systems
,
Bacteria
2016
The clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated genes (Cas) adaptive immune system defends microbes against foreign genetic elements via DNA or RNA-DNA interference. We characterize the class 2 type VI CRISPR-Cas effector C2c2 and demonstrate its RNA-guided ribonuclease function. C2c2 from the bacterium Leptotrichia shahii provides interference against RNA phage. In vitro biochemical analysis shows that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave single-stranded RNA targets carrying complementary protospacers. In bacteria, C2c2 can be programmed to knock down specific mRNAs. Cleavage is mediated by catalytic residues in the two conserved Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, mutations of which generate catalytically inactive RNA-binding proteins. These results broaden our understanding of CRISPR-Cas systems and suggest that C2c2 can be used to develop new RNA-targeting tools.
Journal Article
A Y-chromosome–encoded small RNA acts as a sex determinant in persimmons
2014
In plants, multiple lineages have evolved sex chromosomes independently, providing a powerful comparative framework, but few specific determinants controlling the expression of a specific sex have been identified. We investigated sex determinants in the Caucasian persimmon, Diospyros lotus, a dioecious plant with heterogametic males (XY). Male-specific short nucleotide sequences were used to define a male-determining region. A combination of transcriptomics and evolutionary approaches detected a Y-specific sex-determinant candidate, OGI, that displays male-specific conservation among Diospyros species. OGI encodes a small RNA targeting the autosomal MeGI gene, a homeodomain transcription factor regulating anther fertility in a dosage-dependent fashion. This identification of a feminizing gene suppressed by a Y-chromosome–encoded small RNA contributes to our understanding of the evolution of sex chromosome systems in higher plants.
Journal Article