Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
109,419 result(s) for "Ribonucleic acids"
Sort by:
Nucleic acid detection with CRISPR-Cas13a/C2c2
Rapid, inexpensive, and sensitive nucleic acid detection may aid point-of-care pathogen detection, genotyping, and disease monitoring. The RNA-guided, RNA-targeting clustered regularly interspaced short palindromic repeats (CRISPR) effector Cas13a (previously known as C2c2) exhibits a “collateral effect” of promiscuous ribonuclease activity upon target recognition. We combine the collateral effect of Cas13a with isothermal amplification to establish a CRISPR-based diagnostic (CRISPR-Dx), providing rapid DNA or RNA detection with attomolar sensitivity and single-base mismatch specificity. We use this Cas13a-based molecular detection platform, termed Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK), to detect specific strains of Zika and Dengue virus, distinguish pathogenic bacteria, genotype human DNA, and identify mutations in cell-free tumor DNA. Furthermore, SHERLOCK reaction reagents can be lyophilized for cold-chain independence and long-term storage and be readily reconstituted on paper for field applications.
Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
The mammalian cerebral cortex supports cognitive functions such as sensorimotor integration, memory, and social behaviors. Normal brain function relies on a diverse set of differentiated cell types, including neurons, glia, and vasculature. Here, we have used large-scale single-cell RNA sequencing (RNA-seq) to classify cells in the mouse somatosensory cortex and hippocampal CA1 region. We found 47 molecularly distinct subclasses, comprising all known major cell types in the cortex. We identified numerous marker genes, which allowed alignment with known cell types, morphology, and location. We found a layer I interneuron expressing Pax6 and a distinct postmitotic oligodendrocyte subclass marked by Itpr2. Across the diversity of cortical cell types, transcription factors formed a complex, layered regulatory code, suggesting a mechanism for the maintenance of adult cell type identity.
Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq
Single-cell RNA sequencing identifies a common origin for specific types of human glioma brain tumors. Glioma brain tumors that carry mutant copies of the IDH gene can be subdivided into two major classes. However, the development of and differences between these two classes are not well characterized. Venteicher et al. coupled bulk sequencing and publicly available data with single-cell RNA sequencing data on glioma patient tissue samples. They identified a common lineage program that is shared between glioma subtypes. This suggests that the observed differences between the two glioma classes originate from lineage-specific genetic changes and the tumor microenvironment. Science , this issue p. eaai8478 Tumor subclasses differ according to the genotypes and phenotypes of malignant cells as well as the composition of the tumor microenvironment (TME). We dissected these influences in isocitrate dehydrogenase (IDH)–mutant gliomas by combining 14,226 single-cell RNA sequencing (RNA-seq) profiles from 16 patient samples with bulk RNA-seq profiles from 165 patient samples. Differences in bulk profiles between IDH-mutant astrocytoma and oligodendroglioma can be primarily explained by distinct TME and signature genetic events, whereas both tumor types share similar developmental hierarchies and lineages of glial differentiation. As tumor grade increases, we find enhanced proliferation of malignant cells, larger pools of undifferentiated glioma cells, and an increase in macrophage over microglia expression programs in TME. Our work provides a unifying model for IDH-mutant gliomas and a general framework for dissecting the differences among human tumor subclasses.
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
Blood contains many types of cells, including many immune system components. Immune cells used to be characterized by marker-based assays, but now classification relies on the genes that cells express. Villani et al. used deep sequencing at the single-cell level and unbiased clustering to define six dendritic cell and four monocyte populations. This refined analysis has identified, among others, a previously unknown dendritic cell population that potently activates T cells. Further cell culture revealed possible differentiation progenitors within the different cell populations. Science , this issue p. eaah4573 Discovery of additional immune cell subtypes will help identify functions and immune monitoring during disease. Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis, and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C + subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease.
CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells
The human genome generates many thousands of long noncoding RNAs (lncRNAs). A very small number of lncRNAs have been shown to be functional. Liu et al. carried out a large-scale CRISPR-based screen to assess the function of ∼17,000 lncRNAs in seven different human cell lines. A considerable number (∼500) of the tested lncRNAs influenced cell growth, suggesting biological function. In almost all cases, though, the function was highly cell type—specific, often limited to just one cell type. Science , this issue p. 10.1126/science.aah7111 A considerable fraction of long noncoding RNAs have highly cell type–specific biological functions. The human genome produces thousands of long noncoding RNAs (lncRNAs)—transcripts >200 nucleotides long that do not encode proteins. Although critical roles in normal biology and disease have been revealed for a subset of lncRNAs, the function of the vast majority remains untested. We developed a CRISPR interference (CRISPRi) platform targeting 16,401 lncRNA loci in seven diverse cell lines, including six transformed cell lines and human induced pluripotent stem cells (iPSCs). Large-scale screening identified 499 lncRNA loci required for robust cellular growth, of which 89% showed growth-modifying function exclusively in one cell type. We further found that lncRNA knockdown can perturb complex transcriptional networks in a cell type–specific manner. These data underscore the functional importance and cell type specificity of many lncRNAs.
Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15
Typically, cancer drugs that help only a small number of patients in clinical trials are not pursued. This might change in a future world of precision medicine, where biomarkers will match specific drugs to the patients most likely to respond. Han et al. identified the mechanism of action of a cancer drug called indisulam, a sulfonamide tested previously in patients with solid tumors. Indisulam and related sulfonamides killed cells by disrupting precursor mRNA splicing. The drugs targeted a specific RNA splicing factor for degradation by “gluing” it to the CUL4-DCAF15 ubiquitin ligase. Experiments with cancer cell lines suggest that future clinical trials of these drugs should focus on leukemias and lymphomas with high DCAF15 expression levels. Science , this issue p. eaal3755 Sulfonamide drugs kill cancer cells by targeting a specific RNA splicing factor for degradation. Indisulam is an aryl sulfonamide drug with selective anticancer activity. Its mechanism of action and the basis for its selectivity have so far been unknown. Here we show that indisulam promotes the recruitment of RBM39 (RNA binding motif protein 39) to the CUL4-DCAF15 E3 ubiquitin ligase, leading to RBM39 polyubiquitination and proteasomal degradation. Mutations in RBM39 that prevent its recruitment to CUL4-DCAF15 increase RBM39 stability and confer resistance to indisulam’s cytotoxicity. RBM39 associates with precursor messenger RNA (pre-mRNA) splicing factors, and inactivation of RBM39 by indisulam causes aberrant pre-mRNA splicing. Many cancer cell lines derived from hematopoietic and lymphoid lineages are sensitive to indisulam, and their sensitivity correlates with DCAF15 expression levels. Two other clinically tested sulfonamides, tasisulam and chloroquinoxaline sulfonamide, share the same mechanism of action as indisulam. We propose that DCAF15 expression may be a useful biomarker to guide clinical trials of this class of drugs, which we refer to as SPLAMs (splicing inhibitor sulfonamides).
piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production
PIWI-interacting RNAs (piRNAs) protect the animal germ line by silencing transposons. Primary piRNAs, generated from transcripts of genomic transposon \"junkyards\" (piRNA clusters), are amplified by the \"ping-pong\" pathway, yielding secondary piRNAs. We report that secondary piRNAs, bound to the PIWI protein Ago3, can initiate primary piRNA production from cleaved transposon RNAs. The first ∼26 nucleotides (nt) of each cleaved RNA becomes a secondary piRNA, but the subsequent ∼26 nt become the first in a series of phased primary piRNAs that bind Piwi, allowing piRNAs to spread beyond the site of RNA cleavage. The ping-pong pathway increases only the abundance of piRNAs, whereas production of phased primary piRNAs from cleaved transposon RNAs adds sequence diversity to the piRNA pool, allowing adaptation to changes in transposon sequence.
A Cas9-guide RNA complex preorganized for target DNA recognition
Bacterial adaptive immunity uses CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR transcripts for foreign DNA degradation. In type II CRISPR-Cas systems, activation of Cas9 endonuclease for DNA recognition upon guide RNA binding occurs by an unknown mechanism. Crystal structures of Cas9 bound to single-guide RNA reveal a conformation distinct from both the apo and DNA-bound states, in which the 10-nucleotide RNA \"seed\" sequence required for initial DNA interrogation is preordered in an A-form conformation. This segment of the guide RNA is essential for Cas9 to form a DNA recognition–competent structure that is poised to engage double-stranded DNA target sequences. We construe this as convergent evolution of a \"seed\" mechanism reminiscent of that used by Argonaute proteins during RNA interference in eukaryotes.
Spatially resolved, highly multiplexed RNA profiling in single cells
Multiplexed RNA imaging in single cellsThe basis of cellular function is where and when proteins are expressed and in what quantities. Single-molecule fluorescence in situ hybridization (smFISH) experiments quantify the copy number and location of mRNA molecules; however, the numbers of RNA species that can be simultaneously measured by smFISH has been limited. Using combinatorial labeling with error-robust encoding schemes, Chen et al. simultaneously imaged 100 to 1000 RNA species in a single cell. Such large-scale detection allows regulatory interactions to be analyzed at the transcriptome scale.Science, this issue p. 10.1126/science.aaa6090 Knowledge of the expression profile and spatial landscape of the transcriptome in individual cells is essential for understanding the rich repertoire of cellular behaviors. Here, we report multiplexed error-robust fluorescence in situ hybridization (MERFISH), a single-molecule imaging approach that allows the copy numbers and spatial localizations of thousands of RNA species to be determined in single cells. Using error-robust encoding schemes to combat single-molecule labeling and detection errors, we demonstrated the imaging of 100 to 1000 distinct RNA species in hundreds of individual cells. Correlation analysis of the ~104 to 106 pairs of genes allowed us to constrain gene regulatory networks, predict novel functions for many unannotated genes, and identify distinct spatial distribution patterns of RNAs that correlate with properties of the encoded proteins.
A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation
Female mammals have two X chromosomes, one of which is almost completely shut down during development. The long noncoding Xist RNA plays a role in this process. To understand how a whole chromosome can be stably inactivated, Minajigi et al. identified many of the proteins that bind to the Xist RNA, which include cohesins. Paradoxically, the interaction between Xist and cohesin subunits resulted in repulsion of cohesin complexes from the inactive X chromosome, changing the three-dimensional shape of the whole chromosome. Science , this issue 10.1126/science.aab2276 A screen for factors that bind directly to RNA reveals the proteins that interact with the long noncoding RNA Xist. The inactive X chromosome (Xi) serves as a model to understand gene silencing on a global scale. Here, we perform “identification of direct RNA interacting proteins” (iDRiP) to isolate a comprehensive protein interactome for Xist, an RNA required for Xi silencing. We discover multiple classes of interactors—including cohesins, condensins, topoisomerases, RNA helicases, chromatin remodelers, and modifiers—that synergistically repress Xi transcription. Inhibiting two or three interactors destabilizes silencing. Although Xist attracts some interactors, it repels architectural factors. Xist evicts cohesins from the Xi and directs an Xi-specific chromosome conformation. Upon deleting Xist , the Xi acquires the cohesin-binding and chromosomal architecture of the active X. Our study unveils many layers of Xi repression and demonstrates a central role for RNA in the topological organization of mammalian chromosomes.