Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
26
result(s) for
"Ribosomal Protein S6 Kinases, 90-kDa - therapeutic use"
Sort by:
cPKCγ Inhibits Caspase-9-Initiated Neuronal Apoptosis in an Ischemia Reperfusion Model In Vitro Through p38 MAPK-p90RSK-Bad Pathway
2023
Strokes are one of the leading causes of death and disability in the world. Previously we have found that conventional protein kinase Cγ (cPKCγ) plays neuroprotective role in ischemic strokes. Further, we found that cPKCγ knockdown increased the level of cleaved (cl)-Caspase-3. However, the precise mechanisms underlying cPKCγ-mediated neuronal death remain unclear. To this end, a model incorporating 1 h oxygen–glucose deprivation/24 h reoxygenation (1 h OGD/24 h R) was established in cortical neurons. We found that cPKCγ knockdown remarkably increased neuronal death after OGD. We also found that cPKCγ knockdown increased the level of cl-Caspase-3 through the upstream initiators Capsases-9 (not Caspase-8/12) in OGD-treated neurons. Overexpression of cPKCγ could decrease neuronal death and cl-Caspase-3 and -9 levels. Moreover, cPKCγ knockdown further reduced the phosphorylation levels of p38 MAPK, p90RSK, and Bad. In addition, the protein levels of Bcl-2 and Bcl-xl were decreased after cPKCγ knockdown, whereas that of Bax was increased. In conclusion, our results suggest that cPKCγ partly alleviates ischemic injury through activating the p38 MAPK-p90RSK-Bad pathway and inhibiting Caspase-9 initiated apoptosis. This may have potential as a therapeutic target for ischemic stroke.
Journal Article
EBV LMP1-C terminal binding affibody molecule downregulates MEK/ERK/p90RSK pathway and inhibits the proliferation of nasopharyngeal carcinoma cells in mouse tumor xenograft models
2023
Nasopharyngeal carcinoma (NPC), is an Epstein-Barr virus (EBV) associated malignancy most common in Southern China and Southeast Asia. In southern China, it is one of the major causes of cancer-related death. Despite improvement in radiotherapy and chemotherapy techniques, locoregional recurrence and distant metastasis remains the major causes for failure of treatment in NPC patients. Therefore, finding new specific drug targets for treatment interventions are urgently needed. Here, we report three potential Z LMP1-C affibody molecules (Z LMP1-C 15, Z LMP1-C 114 and Z LMP1-C 277) that showed specific binding interactions for recombinant and native EBV LMP1 as determined by epitope mapping, co-localization and co-immunoprecipitation assays. The Z LMP1-C affibody molecules exhibited high antitumor effects on EBV-positive NPC cell lines and displayed minimal cytotoxicity towards EBV-negative NPC cell line. Moreover, Z LMP1-C 277 showed higher antitumor efficacy than Z LMP1-C 15 and Z LMP1-C 114 affibody molecules. The ability of Z LMP1-C 277 decrease the phosphorylation levels of up-stream activator phospho-Raf-1 (Ser338) , phospho-MEK1/2 (Ser217/Ser221) , phospho-ERK1/2 (Thr202/Thr204) , thereby leading to downstream suppression of phospho-p90RSK (Ser380) and transcription factor c-Fos. Importantly, tumor growth was reduced in tumor-bearing mice treated with Z LMP1-C 277 and caused no apparent toxicity. Taken together, our findings provide evidence that Z LMP1-C 277 as a promising therapeutic agent in EBV-associated NPC.
Journal Article
Mitogen- and Stress-Activated Protein Kinase 1 Mediates Alcohol-Upregulated Transcription of Brf1 and tRNA Genes to Cause Phenotypic Alteration
2020
Upregulation of Brf1 (TFIIB-related factor 1) and Pol III gene (RNA polymerase III-dependent gene, such as tRNAs and 5S rRNA) activities is associated with cell transformation and tumor development. Alcohol intake causes liver injury, such as steatosis, inflammation, fibrosis, and cirrhosis, which enhances the risk of HCC development. However, the mechanism of alcohol-promoted HCC remains to be explored. We have designed the complementary research system, which is composed of cell lines, an animal model, human samples, and experiments in vivo and in vitro, to carry out this project by using molecular biological, biochemical, and cellular biological approaches. It is a unique system to explore the mechanism of alcohol-associated HCC. Our results indicate that alcohol upregulates Brf1 and Pol III gene (tRNAs and 5S rRNA) transcription in primary mouse hepatocytes, immortalized mouse hepatocyte-AML-12 cells, and engineered human HepG2-ADH cells. Alcohol activates MSK1 to upregulate expression of Brf1 and Pol III genes, while inhibiting MSK1 reduces transcription of Brf1 and Pol III genes in alcohol-treated cells. The inhibitor of MSK1, SB-747651A, decreases the rates of cell proliferation and colony formation. Alcohol feeding promotes liver tumor development of the mouse. These results, for the first time, show the identification of the alcohol-response promoter fragment of the Pol III gene key transcription factor, Brf1. Our studies demonstrate that Brf1 expression is elevated in HCC tumor tissues of mice and humans. Alcohol increases cellular levels of Brf1, resulting in enhancement of Pol III gene transcription in hepatocytes through MSK1. Our mechanism analysis has demonstrated that alcohol-caused high-response fragment of the Brf1 promoter is at p-382/+109bp. The MSK1 inhibitor SB-747651A is an effective reagent to repress alcohol-induced cell proliferation and colony formation, which is a potential pharmaceutical agent. Developing this inhibitor as a therapeutic approach will benefit alcohol-associated HCC patients.
Journal Article
Robust anti-myeloma effect of TAS0612, an RSK/AKT/S6K inhibitor, with venetoclax regardless of cytogenetic abnormalities
by
Katsuragawa-Taminishi, Yoko
,
Mizuhara, Kentaro
,
Fujino, Takahiro
in
Abnormalities
,
AKT protein
,
Antineoplastic Combined Chemotherapy Protocols - pharmacology
2025
Multiple myeloma (MM) remains a difficult-to-treat disease even with the latest therapeutic advances due to the complex, overlapping, and heterogeneous cytogenetic, genetic, and molecular abnormalities. To address this challenging problem, we previously identified the universal and critical roles of RSK2 and AKT, the effector signaling molecules downstream of PDPK1, regardless of cytogenetic and genetic profiles. Based on this, in this study, we investigated the anti-myeloma potency of TAS0612, a triple inhibitor against RSK, including RSK2, AKT, and S6K. Treatment with TAS0612 exerted the anti-proliferative effect via cell cycle blockade and the induction of apoptosis in human myeloma-derived cell lines (HMCLs) with diverse cytogenetic and genetic profiles. Ex vivo treatment with TAS0612 also significantly reduced the viability of patient-derived primary myeloma cells with diverse cytogenetic profiles. TAS0612 simultaneously caused the upregulation of several tumor suppressor genes, modulated prognostic genes according to the MMRF CoMMpass data, and downregulated a series of Myc- and mTOR-related genes. Moreover, the combination of TAS0612 with venetoclax (VEN) showed the synergy in inducing apoptosis in HMCLs irrespective of the t(11;14) translocation status. TAS0612 alone and combined with VEN are new potent candidate therapeutic strategies for MM, regardless of cytogenetic/genetic profiles, facilitating its future clinical development.
Journal Article
β-Trcp ubiquitin ligase and RSK2 kinase-mediated degradation of FOXN2 promotes tumorigenesis and radioresistance in lung cancer
2018
Aberrant expression of FOXN2, a member of the Forkhead box transcription factors, has been found in several types of cancer. However, the underlying mechanisms of FOXN2 deregulation in tumorigenesis remain largely unknown. Here, we find that FOXN2 binds to and is ubiquitinated by β-Trcp ubiquitin ligase and RSK2 kinase for degradation. Furthermore, we demonstrate that the Ser365 and Ser369 sites in a conserved DSGYAS motif are critical for the degradation of FOXN2 by β-Trcp and RSK2. Moreover, gain-of-function and loss-of-function studies show that FOXN2 impairs cell proliferation in vitro and in vivo and enhances the radiosensitivity of lung cancer. Importantly, β-Trcp-mediated and RSK2-mediated degradation of FOXN2 promotes tumorigenesis and radioresistance in lung cancer cells. Collectively, our study reveals a novel post-translational modification of FOXN2 and suggests that FOXN2 may be a potential therapeutic and radiosensitization target for lung cancer.
Journal Article
Discovery of a novel dual-target inhibitor against RSK1 and MSK2 to suppress growth of human colon cancer
2020
Colon cancer is the most aggressive tumor in both men and women globally. As many the chemotherapeutic regimens have adverse side effects and contribute to the resistance and recurrence, therefore, finding novel therapeutic targets and developing effective agents are urgent. Based on the TCGA and GTEx database analysis, RSK1 and MSK2 were found abnormal expressed in colon cancer. RSK1 and MSK2 were overexpressed in colon cancer tissues confirmed by western blot and IHC. After knocking down RSK1 or MSK2, cell proliferation and anchorage-independent cell growth were markedly inhibited. Using a computer docking model, we identified a novel dual-target inhibitor, APIO-EE-07, that could block both RSK1 and MSK2 kinase activity in a dose-dependent manner. APIO-EE-07 inhibited cell growth and induced apoptosis and also increased expression of Bax as well as cleaved caspase-3 and -PARP in colon cancer cells by downregulating RSK1 and MSK2 downstream targets, including CREB and ATF1. Furthermore, APIO-EE-07 decreased tumor volume and weight in human patient-derived xenografts tumors implanted in SCID mice. In summary, our results demonstrate that RSK1 and MSK2 are the potential targets for the treatment of colon cancer. APIO-EE-07, a novel dual-target inhibitor of RSK1 and MSK2, can suppress the growth of colon cancer by attenuating RSK1 and MSK2 signaling.
Journal Article
RSK2 protects human breast cancer cells under endoplasmic reticulum stress through activating AMPKα2-mediated autophagy
2020
Autophagy can protect stressed cancer cell by degradation of damaged proteins and organelles. However, the regulatory mechanisms behind this cellular process remain incompletely understood. Here, we demonstrate that RSK2 (p90 ribosomal S6 kinase 2) plays a critical role in ER stress-induced autophagy in breast cancer cells. We demonstrated that the promotive effect of RSK2 on autophagy resulted from directly binding of AMPKα2 in nucleus and phosphorylating it at Thr172 residue. IRE1α, an ER membrane-associated protein mediating unfolded protein response (UPR), is required for transducing the signal for activation of ERK1/2-RSK2 under ER stress. Suppression of autophagy by knockdown of RSK2 enhanced the sensitivity of breast cancer cells to ER stress both in vitro and in vivo. Furthermore, we demonstrated that inhibition of RSK2-mediated autophagy rendered breast cancer cells more sensitive to paclitaxel, a chemotherapeutic agent that induces ER stress-mediated cell death. This study identifies RSK2 as a novel controller of autophagy in tumor cells and suggests that targeting RSK2 can be exploited as an approach to reinforce the efficacy of ER stress-inducing agents against cancer.
Journal Article
Inhibition of p90 ribosomal S6 kinases disrupts melanoma cell growth and immune evasion
2023
Background
The mitogen-activated protein kinase (MAPK) signaling pathway is frequently hyperactivated in malignant melanoma and its inhibition has proved to be an efficient treatment option for cases harboring BRAF
V600
mutations (BRAF
Mut
). However, there is still a significant need for effective targeted therapies for patients with other melanoma subgroups characterized by constitutive MAPK activation, such as tumors with NRAS or NF-1 alterations (NRAS
Mut
, NF-1
LOF
), as well as for patients with MAPK pathway inhibitor-resistant BRAF
Mut
melanomas, which commonly exhibit a reactivation of this pathway. p90 ribosomal S6 kinases (RSKs) represent central effectors of MAPK signaling, regulating cell cycle progression and survival.
Methods
RSK activity and the functional effects of its inhibition by specific small molecule inhibitors were investigated in established melanoma cell lines and patient-derived short-term cultures from different MAPK pathway-hyperactivated genomic subgroups (NRAS
Mut
, BRAF
Mut
, NF-1
LOF
). Real-time qPCR, immunoblots and flow cytometric cell surface staining were used to explore the molecular changes following RSK inhibition. The effect on melanoma cell growth was evaluated by various two- and three-dimensional in vitro assays as well as with melanoma xenograft mouse models. Co-cultures with gp100- or Melan-A-specific cytotoxic T cells were used to assess immunogenicity of melanoma cells and associated T-cell responses.
Results
In line with elevated activity of the MAPK/RSK signaling axis, growth and survival of not only BRAF
Mut
but also NRAS
Mut
and NF-1
LOF
melanoma cells were significantly impaired by RSK inhibitors. Intriguingly, RSK inhibition was particularly effective in three-dimensional growth settings with long-term chronic drug exposure and suppressed tumor cell growth of in vivo melanoma models. Additionally, our study revealed that RSK inhibition simultaneously promoted differentiation and immunogenicity of the tumor cells leading to enhanced T-cell activation and melanoma cell killing.
Conclusions
Collectively, RSK inhibitors exhibited both multi-layered anti-tumor efficacy and broad applicability across different genomic melanoma subgroups. RSK inhibition may therefore represent a promising novel therapeutic strategy for malignant melanoma with hyperactivated MAPK signaling.
Journal Article
Ferulic Acid Administered at Various Time Points Protects against Cerebral Infarction by Activating p38 MAPK/p90RSK/CREB/Bcl-2 Anti-Apoptotic Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion Injury in Rats
2016
This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra.
FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA).
Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios.
Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to inhibition of the cytochrome c-mediated caspase-3-dependent apoptotic pathway in the cortical penumbra 7 d after reperfusion.
Journal Article
The role of the p90 ribosomal S6 kinase family in prostate cancer progression and therapy resistance
by
Prischi, Filippo
,
Cronin, Ryan
,
Brooke, Greg N.
in
631/67/589/466
,
631/80/458/1733
,
631/80/86/388
2021
Prostate cancer (PCa) is the second most commonly occurring cancer in men, with over a million new cases every year worldwide. Tumor growth and disease progression is mainly dependent on the Androgen Receptor (AR), a ligand dependent transcription factor. Standard PCa therapeutic treatments include androgen-deprivation therapy and AR signaling inhibitors. Despite being successful in controlling the disease in the majority of men, the high frequency of disease progression to aggressive and therapy resistant stages (termed castrate resistant prostate cancer) has led to the search for new therapeutic targets. The p90 ribosomal S6 kinase (RSK1-4) family is a group of highly conserved Ser/Thr kinases that holds promise as a novel target. RSKs are effector kinases that lay downstream of the Ras/Raf/MEK/ERK signaling pathway, and aberrant activation or expression of RSKs has been reported in several malignancies, including PCa. Despite their structural similarities, RSK isoforms have been shown to perform nonredundant functions and target a wide range of substrates involved in regulation of transcription and translation. In this article we review the roles of the RSKs in proliferation and motility, cell cycle control and therapy resistance in PCa, highlighting the possible interplay between RSKs and AR in mediating disease progression. In addition, we summarize the current advances in RSK inhibitor development and discuss their potential clinical benefits.
Journal Article