Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
230
result(s) for
"Ribotyping - methods"
Sort by:
Development and Validation of an Internationally-Standardized, High-Resolution Capillary Gel-Based Electrophoresis PCR-Ribotyping Protocol for Clostridium difficile
by
Anderson, Lydia
,
Fawley, Warren N.
,
Kuijper, E. J.
in
Banding
,
Capillary electrophoresis
,
Clostridium difficile
2015
PCR-ribotyping has been adopted in many laboratories as the method of choice for C. difficile typing and surveillance. However, issues with the conventional agarose gel-based technique, including inter-laboratory variation and interpretation of banding patterns have impeded progress. The method has recently been adapted to incorporate high-resolution capillary gel-based electrophoresis (CE-ribotyping), so improving discrimination, accuracy and reproducibility. However, reports to date have all represented single-centre studies and inter-laboratory variability has not been formally measured or assessed. Here, we achieved in a multi-centre setting a high level of reproducibility, accuracy and portability associated with a consensus CE-ribotyping protocol. Local databases were built at four participating laboratories using a distributed set of 70 known PCR-ribotypes. A panel of 50 isolates and 60 electronic profiles (blinded and randomized) were distributed to each testing centre for PCR-ribotype identification based on local databases generated using the standard set of 70 PCR-ribotypes, and the performance of the consensus protocol assessed. A maximum standard deviation of only ±3.8bp was recorded in individual fragment sizes, and PCR-ribotypes from 98.2% of anonymised strains were successfully discriminated across four ribotyping centres spanning Europe and North America (98.8% after analysing discrepancies). Consensus CE-ribotyping increases comparability of typing data between centres and thereby facilitates the rapid and accurate transfer of standardized typing data to support future national and international C. difficile surveillance programs.
Journal Article
Propionibacterium acnes Strain Populations in the Human Skin Microbiome Associated with Acne
by
Nguyen, Lin
,
Li, Huiying
,
Du, Christine
in
Acne Vulgaris - microbiology
,
Adult
,
DNA, Bacterial - genetics
2013
The human skin microbiome has important roles in skin health and disease. However, bacterial population structure and diversity at the strain level is poorly understood. We compared the skin microbiome at the strain level and genome level of Propionibacterium acnes, a dominant skin commensal, between 49 acne patients and 52 healthy individuals by sampling the pilosebaceous units on their noses. Metagenomic analysis demonstrated that although the relative abundances of P. acnes were similar, the strain population structures were significantly different in the two cohorts. Certain strains were highly associated with acne, and other strains were enriched in healthy skin. By sequencing 66 previously unreported P. acnes strains and comparing 71 P. acnes genomes, we identified potential genetic determinants of various P. acnes strains in association with acne or health. Our analysis suggests that acquired DNA sequences and bacterial immune elements may have roles in determining virulence properties of P. acnes strains, and some could be future targets for therapeutic interventions. This study demonstrates a previously unreported paradigm of commensal strain populations that could explain the pathogenesis of human diseases. It underscores the importance of strain-level analysis of the human microbiome to define the role of commensals in health and disease.
Journal Article
Automated web-based typing of Clostridioides difficile ribotypes via MALDI-TOF MS
by
Sánchez-Cueto, María
,
Muñoz, Patricia
,
Rodríguez-Temporal, David
in
Algorithms
,
Automation
,
Bioinformatics
2025
Background
Clostridioides difficile
is a major cause of hospital-acquired diarrhea and a driver of nosocomial outbreaks, yet rapid, accurate ribotype identification remains challenging. We sought to develop a MALDI-TOF MS–based workflow coupled with machine learning to distinguish epidemic toxigenic ribotypes (RT027 and RT181) from other strains in real time.
Results
We analyzed MALDI-TOF spectra from 379 clinical isolates collected across ten Spanish hospitals and identified seven discriminant biomarker peaks. Two peaks (2463 and 4993 m/z) were uniquely associated with RT027, while combinations of five additional peaks reliably identified RT181. Our classifiers–implemented both in the commercial Clover MSDAS platform and the open-access AutoCdiff web tool–achieved up to 100% balanced accuracy in ribotype assignment and proved robust in real-time outbreak simulations.
Conclusions
This study demonstrates that MALDI-TOF MS combined with tailored machine learning can deliver rapid, high-precision ribotype identification for
C. difficile
. The freely available AutoCdiff models (
https://bacteria.id
) offer an immediately deployable solution for clinical laboratories, with the potential to enhance outbreak surveillance and control.
Journal Article
Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys
2012
Taxonomic classification of the thousands–millions of 16S rRNA gene sequences generated in microbiome studies is often achieved using a naïve Bayesian classifier (for example, the Ribosomal Database Project II (RDP) classifier), due to favorable trade-offs among automation, speed and accuracy. The resulting classification depends on the reference sequences and taxonomic hierarchy used to train the model; although the influence of primer sets and classification algorithms have been explored in detail, the influence of training set has not been characterized. We compared classification results obtained using three different publicly available databases as training sets, applied to five different bacterial 16S rRNA gene pyrosequencing data sets generated (from human body, mouse gut, python gut, soil and anaerobic digester samples). We observed numerous advantages to using the largest, most diverse training set available, that we constructed from the Greengenes (GG) bacterial/archaeal 16S rRNA gene sequence database and the latest GG taxonomy. Phylogenetic clusters of previously unclassified experimental sequences were identified with notable improvements (for example, 50% reduction in reads unclassified at the phylum level in mouse gut, soil and anaerobic digester samples), especially for phylotypes belonging to specific phyla (Tenericutes, Chloroflexi, Synergistetes and Candidate phyla TM6, TM7). Trimming the reference sequences to the primer region resulted in systematic improvements in classification depth, and greatest gains at higher confidence thresholds. Phylotypes unclassified at the genus level represented a greater proportion of the total community variation than classified operational taxonomic units in mouse gut and anaerobic digester samples, underscoring the need for greater diversity in existing reference databases.
Journal Article
Effective use of skin microbiome signatures for fingerprint identification
by
Çakan, Hüseyin
,
Yılmaz, Seda Salman
,
Aygün, Gökhan
in
Adult
,
Cascade chemical reactions
,
Dermatoglyphics
2024
Background
Recent advances have increased the importance of the human microbiome, including the skin microbiome. Despite the hand microbiome research, the factors affecting the composition of the hand microbiome and their personal characteristics are incompletely known.
Objectives
Despite changing environmental factors and personal variation, we aimed to indicate the interpersonal distinction between skin microbiota using simple and rapid molecular methods.
Methods
Over a non‐consecutive 10‐day period, samples were taken from 10 adult individuals, and ribotyping analysis of the 16S and 23S genes of S. epidermidis was performed on each skin sample. Additionally, EcoRI and HindIII enzyme reactions and variable number tandem repeat (VNTR) reactions of S. epidermidis obtained from DNA samples were performed. The skin microbiomes of individuals were evaluated along with the microbiome profiles left on the surfaces they touched.
Results
In the environmental samples taken, it has been observed that people preserve their core skin microbiota characters and carry them to their environment. It was determined that the highest similarity rate was 77.14%, and the lowest similarity rate was 31.74%.
Conclusion
Our study showed that the core skin microbiota retains its characteristics and leaves traces in environments. The fact that the personal microbiome remains unchanged despite environmental differences and has characteristic features has shown that it can be used in forensic sciences to distinguish individuals from each other. These results with simple and rapid methods further increased the importance and significance of the study. The findings indicate that personal skin microbiota can provide a significant contribution to criminal investigations by increasing accuracy and reliability, especially in forensic analyses.
Journal Article
High Molecular Weight Typing with MALDI-TOF MS - A Novel Method for Rapid Typing of Clostridium difficile
2015
Clostridium difficile strains were typed by a newly developed MALDI-TOF method, high molecular weight typing, and compared to PCR ribotyping. Among 500 isolates representing 59 PCR ribotypes a total of 35 high molecular weight types could be resolved. Although less discriminatory than PCR ribotyping, the method is extremely fast and simple, and supports for cost-effective screening of isolates during outbreak situations.
Journal Article
Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques
by
Fuchs, Bernhard M.
,
Amann, Rudolf
in
Archaea - classification
,
Archaea - genetics
,
Archaea - isolation & purification
2008
Key Points
Specialized microorganisms catalyse central steps of global element cycling, such as nitrogen fixation or the mineralization of organic matter. There is an urgent need for the development of new methods for
in situ
microbial analysis, which originates from the restricted morphological diversity of prokaryotes and the limited usefulness of cultivation-based methods for quantifying species and genera at a spatial resolution that is relevant for microorganisms. Fluorescence
in situ
hybridization (FISH) enables reliable quantification of microbial populations in complex environmental samples.
FISH probes that target large taxonomic groups, such as the Bacteria, Archaea and Eukarya domains or the Alpha-, Beta- and Gammaproteobacteria classes are popular. Owing to their broad specificity, these probes can be used to analyse samples from many different environments that range from marine and freshwater environments to sediments and soils. They also facilitate an initial, rapid assessment of the dominance of certain taxa in particular environments. Most of these group-specific probes were published more than 10 years ago, when the ribosomal RNA (rRNA) database was less than 10% of its current size.
We address the question: which of these old probes are still valid? We checked the probes thoroughly against the comprehensive rRNA datasets of the SILVA project. The good news is that most probes can still be used for initial identification and quantification of microbial populations.
Failure to detect cells — that is, a false-negative FISH result — can be due to lack of cell permeabilization, low cellular ribosome content or low efficiency of probe binding based on the higher-order structure of the rRNA.
The new, more sensitive FISH assays have the greatest impact in oligotrophic environments, where the indigenous microbiota has low ribosome content, and in samples in which the background fluorescence hampers reliable quantification of less-frequent populations. With good microscopes, even populations of a relative abundance of 1 in 1,000 cells can be accurately quantified.
FISH enables studies of microorganisms in their natural contexts. Metagenomics cannot substitute for the information that can be gained by visualizing the identity and activity of single microbial cells
in situ
. Rather, it will make available huge sequence datasets that will help in improving existing probe sets and facilitate the development of new probes.
Amann and Fuchs provide an update on recent methodological improvements to fluorescence
in situ
hybridization protocols, with a particular focus on whether the original group-specific probes, which were mostly developed more than 10 years ago, are still valid.
The ribosomal-RNA (rRNA) approach to microbial evolution and ecology has become an integral part of environmental microbiology. Based on the patchy conservation of rRNA, oligonucleotide probes can be designed with specificities that range from the species level to the level of phyla or even domains. When these probes are labelled with fluorescent dyes or the enzyme horseradish peroxidase, they can be used to identify single microbial cells directly by fluorescence
in situ
hybridization. In this Review, we provide an update on the recent methodological improvements that have allowed more reliable quantification of microbial populations
in situ
in complex environmental samples, with a particular focus on the usefulness of group-specific probes in this era of ever-growing rRNA databases.
Journal Article
High prevalence of Clostridiodes diffiicle PCR ribotypes 001 and 126 in Iran
2020
Clostridium difficile
is a leading causative agent of hospital-acquired and community-acquired diarrhea in human. This study aims to characterize the predominant
C. difficile
strains, RT001 and 126, circulating in Iranian hospitals in relation to resistant phenotypes, the antibiotic resistance genes, and their genetic relatedness. A total number of 735 faecal specimens were collected from patients suspected of CDI in Tehran hospitals. Typing and subtyping of the strains were performed using CE-PCR ribotyping and MLVA, respectively, followed by PCR assays for ARGs and indicators of Tns. Minimum inhibitory concentrations (MICs) of five antibiotics were determined by MIC Test Strips. Among 65 strains recovered from CDI patients, RT001 (32.3%) and RT126 (9.2%) were found as the most frequent ribotypes, and 64 MLVA types were identified. Using MLVA, RT001 and RT126 were subtyped into 6 and 4 groups, respectively. The
vanA
,
nim
,
tetM
,
gyrA
,
gyrB
genes were detected in 24.6%, 0%, 89.2%, 95.3%, and 92.3% of the strains, respectively. The indicators of Tns including
vanHAX
,
tndX
, and
int
were found in 0%, 3% and 29.2% of the strains, respectively. The most common amino acid (AA) alterations of GyrA and GyrB were related to substitutions of Thr82 → Val and Ser366 → Val, respectively. Resistance rate to metronidazole, vancomycin, tetracycline, ciprofloxacin, and moxifloxacin was 81.5%, 30.7%, 85%, 79%, and 74%, respectively. This study, for the first time revealed the subtypes of circulating RT001 and RT126 in Iran. It is of importance that the majority of the strains belonging to RT001 were multidrug resistant (MDR). This study also pointed to the intra-hospital dissemination of the strains belonging to RT001 and RT126 for short and long periods, respectively, using MLVA. The most important resistance phenotypes observed in this study was vancomycin-resistant phenotypes. Resistance to metronidazole was also high and highlights the need to determine its resistance mechanisms in the future studies.
Journal Article
Phylogenomic analysis of Clostridioides difficile ribotype 106 strains reveals novel genetic islands and emergent phenotypes
2020
Clostridioides difficile
infection (CDI) is a major healthcare-associated diarrheal disease. Consistent with trends across the United States,
C. difficile
RT106 was the second-most prevalent molecular type in our surveillance in Arizona from 2015 to 2018. A representative RT106 strain displayed robust virulence and 100% lethality in the hamster model of acute CDI. We identified a unique 46 KB genomic island (GI1) in all RT106 strains sequenced to date, including those in public databases. GI1 was not found in its entirety in any other
C. difficile
clade, or indeed, in any other microbial genome; however, smaller segments were detected in
Enterococcus faecium
strains. Molecular clock analyses suggested that GI1 was horizontally acquired and sequentially assembled over time. GI1 encodes homologs of VanZ and a SrtB-anchored collagen-binding adhesin, and correspondingly, all tested RT106 strains had increased teicoplanin resistance, and a majority displayed collagen-dependent biofilm formation. Two additional genomic islands (GI2 and GI3) were also present in a subset of RT106 strains. All three islands are predicted to encode mobile genetic elements as well as virulence factors. Emergent phenotypes associated with these genetic islands may have contributed to the relatively rapid expansion of RT106 in US healthcare and community settings.
Journal Article
Evidence of transmission of Clostridium difficile in asymptomatic patients following admission screening in a tertiary care hospital
2019
Clostridium difficile (CD) is the leading cause of infectious health-care associated diarrhea. However, little is known regarding CD carriage and transmission amongst asymptomatic colonizers. We evaluated carriage, characterized strains and examined epidemiologic linkages in asymptomatic colonized CD patients.
Rectal swabs from asymptomatic patients admitted to the general medicine ward from April 1-June 30 2012 were collected. PCR-confirmed CD colonies were ribotyped and characterized by Modified-Multi Locus Variable Number Tandem Repeat Analysis (MMLVA).
1549-swabs were collected from 474-patients. Overall, 50/474(10.6%) were CD PCR-positive, 24/50 were colonized at admission, while 26/50 were first identified > = 72 hours after admission. Amongst the 50 CD PCR-positive patients, 90% were asymptomatically colonized and 80% of individuals carried toxigenic CD-strains, including ribotype-027 (5/45:11%). MMLVA revealed five-clusters involving 15-patients harboring toxigenic (4/5) and non-toxigenic CD strains (1/5). In two clusters, patients were CD positive on admission while in the other three clusters involving 10 patients, we observed CD transmission from asymptomatically colonized patients to 8 previously CD-negative patients.
We identified increasing rates of colonization during admission to medical wards. MMLVA typing effectively discriminated between strains and suggests that 20% of patients with CD colonization acquired their strain(s) from asymptomatically colonized individuals in hospital.
Journal Article