Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
6,365 result(s) for "Robust optimization"
Sort by:
Theory and Applications of Robust Optimization
In this paper we survey the primary research, both theoretical and applied, in the area of robust optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multistage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.
Robust optimization of spline models and complex regulatory networks : theory, methods and applications
This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to handle uncertainty and non-linearity. The proposed techniques are implemented and explained in two-model regulatory systems that can be found in the financial sector and in the contexts of banking, environmental protection, system biology and medicine. The book provides necessary background information on multi-model regulatory networks, optimization and regression. It presents the theory of and approaches to robust (conic) multivariate adaptive regression splines - R(C)MARS - and robust (conic) generalized partial linear models - R(C)GPLM - under polyhedral uncertainty. Further, it introduces spline regression models for multi-model regulatory networks and interprets (C)MARS results based on different datasets for the implementation. It explains robust optimization in these models in terms of both the theory and methodology. In this context it studies R(C)MARS results with different uncertainty scenarios for a numerical example. Lastly, the book demonstrates the implementation of the method in a number of applications from the financial, energy, and environmental sectors, and provides an outlook on future research.
Probabilistic Optimization Techniques in Smart Power System
Uncertainties are the most significant challenges in the smart power system, necessitating the use of precise techniques to deal with them properly. Such problems could be effectively solved using a probabilistic optimization strategy. It is further divided into stochastic, robust, distributionally robust, and chance-constrained optimizations. The topics of probabilistic optimization in smart power systems are covered in this review paper. In order to account for uncertainty in optimization processes, stochastic optimization is essential. Robust optimization is the most advanced approach to optimize a system under uncertainty, in which a deterministic, set-based uncertainty model is used instead of a stochastic one. The computational complexity of stochastic programming and the conservativeness of robust optimization are both reduced by distributionally robust optimization.Chance constrained algorithms help in solving the constraints optimization problems, where finite probability get violated. This review paper discusses microgrid and home energy management, demand-side management, unit commitment, microgrid integration, and economic dispatch as examples of applications of these techniques in smart power systems. Probabilistic mathematical models of different scenarios, for which deterministic approaches have been used in the literature, are also presented. Future research directions in a variety of smart power system domains are also presented.
Ambiguous Joint Chance Constraints Under Mean and Dispersion Information
We study joint chance constraints where the distribution of the uncertain parameters is only known to belong to an ambiguity set characterized by the mean and support of the uncertainties and by an upper bound on their dispersion. This setting gives rise to pessimistic (optimistic) ambiguous chance constraints, which require the corresponding classical chance constraints to be satisfied for every (for at least one) distribution in the ambiguity set. We demonstrate that the pessimistic joint chance constraints are conic representable if (i) the constraint coefficients of the decisions are deterministic, (ii) the support set of the uncertain parameters is a cone, and (iii) the dispersion function is of first order, that is, it is positively homogeneous. We also show that pessimistic joint chance constrained programs become intractable as soon as any of the conditions (i), (ii) or (iii) is relaxed in the mildest possible way. We further prove that the optimistic joint chance constraints are conic representable if (i) holds, and that they become intractable if (i) is violated. We show in numerical experiments that our results allow us to solve large-scale project management and image reconstruction models to global optimality. The online appendix is available at https://doi.org/10.1287/opre.2016.1583 .
Robust Optimization
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
Design of Distributed and Robust Optimization Algorithms
Long description: Optimization algorithms are the backbone of many modern technologies. In this thesis, we address the analysis and design of optimization algorithms from a systems theoretic viewpoint. By properly recasting the algorithm design as a controller synthesis problem, we derive methods that enable a systematic design of tailored optimization algorithms. We consider two specific classes of optimization algorithms: (i) distributed, and (ii) robust optimization algorithms. Concerning (i), we utilize ideas from geometric control in an innovative fashion to derive a novel methodology that enables the design of distributed optimization algorithms under minimal assumptions on the graph topology and the structure of the optimization problem. Concerning (ii), we employ robust control techniques to establish a framework for the analysis of existing algorithms as well as the design of novel robust optimization algorithms with specified guarantees.
The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty
The robust capacitated vehicle routing problem (CVRP) under demand uncertainty is studied to address the minimum cost delivery of a product to geographically dispersed customers using capacity-constrained vehicles. Contrary to the deterministic CVRP, which postulates that the customer demands for the product are deterministic and known, the robust CVRP models the customer demands as random variables, and it determines a minimum cost delivery plan that is feasible for all anticipated demand realizations. Robust optimization counterparts of several deterministic CVRP formulations are derived and compared numerically. Robust rounded capacity inequalities are developed, and it is shown how they can be separated efficiently for two broad classes of demand supports. Finally, it is analyzed how the robust CVRP relates to the chance-constrained CVRP, which allows a controlled degree of supply shortfall to decrease delivery costs.
Pareto Adaptive Robust Optimality via a Fourier–Motzkin Elimination lens
We formalize the concept of Pareto Adaptive Robust Optimality (PARO) for linear two-stage Adaptive Robust Optimization (ARO) problems, with fixed continuous recourse. A worst-case optimal solution pair of here-and-now decisions and wait-and-see decisions is PARO if it cannot be Pareto dominated by another solution, i.e., there does not exist another worst-case optimal pair that performs at least as good in all scenarios in the uncertainty set and strictly better in at least one scenario. We argue that, unlike PARO, extant solution approaches—including those that adopt Pareto Robust Optimality from static robust optimization—could fail in ARO and yield solutions that can be Pareto dominated. The latter could lead to inefficiencies and suboptimal performance in practice. We prove the existence of PARO solutions, and present approaches for finding and approximating such solutions. Amongst others, we present a constraint & column generation method that produces a PARO solution for the considered two-stage ARO problems by iteratively improving upon a worst-case optimal solution. We present numerical results for a facility location problem that demonstrate the practical value of PARO solutions. Our analysis of PARO relies on an application of Fourier–Motzkin Elimination as a proof technique. We demonstrate how this technique can be valuable in the analysis of ARO problems, besides PARO. In particular, we employ it to devise more concise and more insightful proofs of known results on (worst-case) optimality of decision rule structures.
When are static and adjustable robust optimization problems with constraint-wise uncertainty equivalent?
Adjustable robust optimization (ARO) generally produces better worst-case solutions than static robust optimization (RO). However, ARO is computationally more difficult than RO. In this paper, we provide conditions under which the worst-case objective values of ARO and RO problems are equal. We prove that when the uncertainty is constraint-wise, the problem is convex with respect to the adjustable variables and concave with respect to the uncertain parameters, the adjustable variables lie in a convex and compact set and the uncertainty set is convex and compact, then robust solutions are also optimal for the corresponding ARO problem. Furthermore, we prove that if some of the uncertain parameters are constraint-wise and the rest are not, then under a similar set of assumptions there is an optimal decision rule for the ARO problem that does not depend on the constraint-wise uncertain parameters. Also, we show for a class of problems that using affine decision rules that depend on all of the uncertain parameters yields the same optimal objective value as when the rules depend solely on the non-constraint-wise uncertain parameters. Finally, we illustrate the usefulness of these results by applying them to convex quadratic and conic quadratic problems.