Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
217
result(s) for
"Rollbacks"
Sort by:
Geological Evolution of the Tibetan Plateau
by
Burchfiel, B. Clark
,
Royden, Leigh H
,
van der Hilst, Robert D
in
China
,
Deformation
,
Earth sciences
2008
The geological evolution of the Tibetan plateau is best viewed in a context broader than the India-Eurasia collision zone. After collision about 50 million years ago, crust was shortened in western and central Tibet, while large fragments of lithosphere moved from the collision zone toward areas of trench rollback in the western Pacific and Indonesia. Cessation of rapid Pacific trench migration (~15 to 20 million years ago) coincided with a slowing of fragment extrusion beyond the plateau and probably contributed to the onset of rapid surface uplift and crustal thickening in eastern Tibet. The latter appear to result from rapid eastward flow of the deep crust, probably within crustal channels imaged seismically beneath eastern Tibet. These events mark a transition to the modern structural system that currently accommodates deformation within Tibet.
Journal Article
On the formation and evolution of the Pannonian Basin: Constraints derived from the structure of the junction area between the Carpathians and Dinarides
2012
The large number and distribution of rollback systems in Mediterranean orogens infer the possibility of interacting extensional back‐arc deformation driven by different slabs. The formation of the Pannonian back‐arc basin is generally related to the rapid Miocene rollback of a slab attached to the European continent. A key area of the entire system that is neglected by kinematic studies is the connection between the South Carpathians and Dinarides. In order to derive an evolutionary model, we interpreted regional seismic lines traversing the entire Serbian part of the Pannonian Basin. The observed deformation is dominantly expressed by the formation of Miocene extensional detachments and (half) grabens. The extensional geometries and associated synkinematic sedimentation that migrated in time and space allow the definition of a continuous and essentially asymmetric early to late Miocene extensional evolution. This evolution was followed by the formation of few uplifted areas during the subsequent latest Miocene–Quaternary inversion. The present‐day extensional geometry changing the strike across the basin is an effect of the clockwise rotation of the South Carpathians and Apuseni Mountains in respect to the Dinarides. Our study infers that the Carpathian rollback is not the only mechanism responsible for the formation of the Pannonian Basin; an additional middle Miocene rollback of a Dinaridic slab is required to explain the observed structures. Furthermore, the study provides constraints for the pre‐Neogene orogenic evolution of this junction zone, including the affinity of major crustal blocks, obducted ophiolitic sequences and the Sava suture zone. Key Points Novel early to late Miocene extensional evolution Migration in time and space of the normal faulting Novel component of rollback of a Dinaridic slab
Journal Article
The Effect of Extended Unemployment Insurance Benefits: Evidence from the 2012-2013 Phase-Out
by
Farber, Henry S.
,
Valletta, Robert G.
,
Rothstein, Jesse
in
2012-2013
,
Central banks
,
Economic analysis
2015
Unemployment Insurance benefit durations were extended during the Great Recession, reaching 99 weeks for most recipients. The extensions were rolled back and eventually terminated by the end of 2013. Using matched CPS data from 2008-2014, we estimate the effect of extended benefits on unemployment exits separately during the earlier period of benefit expansion and the later period of rollback. In both periods, we find little or no effect on job-finding but a reduction in labor force exits due to benefit availability. We estimate that the rollbacks reduced the labor force participation rate by about 0.1 percentage point in early 2014.
Journal Article
Craton destruction and related resources
by
Fan, Hongrui
,
Zhu, Guang
,
Zheng, Tianyu
in
Chemical properties
,
Chemicophysical properties
,
Cratons
2017
Craton destruction is a dynamic event that plays an important role in Earth’s evolution. Based on comprehensive observations of many studies on the North China Craton (NCC) and correlations with the evolution histories of other cratons around the world, craton destruction has be defined as a geological process that results in the total loss of craton stability due to changes in the physical and chemical properties of the involved craton. The mechanisms responsible for craton destruction would be as the follows: (1) oceanic plate subduction; (2) rollback and retreat of a subducting oceanic plate; (3) stagnation and dehydration of a subducting plate in the mantle transition zone; (4) melting of the mantle above the mantle transition zone caused by dehydration of a stagnant slab; (5) non-steady flow in the upper mantle induced by melting, and/or (6) changes in the nature of the lithospheric mantle and consequent craton destruction caused by non-steady flow. Oceanic plate subduction itself does not result in craton destruction. For the NCC, it is documented that westward subduction of the paleo-Pacific plate should have initiated at the transition from the Middle-to-Late Jurassic, and resulted in the change of tectonic regime of eastern China. We propose that subduction, rollback and retreat of oceanic plates and dehydration of stagnant slabs are the main dynamic factors responsible for both craton destruction and concentration of mineral deposits, such as gold, in the overriding continental plate. Based on global distribution of gold deposits, we suggest that convergent plate margins are the most important setting for large gold concentrations. Therefore, decratonic gold deposits appear to occur preferentially in regions with oceanic subduction and overlying continental lithospheric destruction/modification/growth.
Journal Article
Craton deformation from flat-slab subduction and rollback
2024
The mechanisms underlying the deformation and eventual destruction of Earth’s cratons remain enigmatic, despite proposed links to subduction and deep mantle plume processes. Here we study the deformation of the North China Craton using four-dimensional mantle flow models of the plate–mantle system since the late Mesozoic, integrating constraints from lithospheric deformation, mantle seismic tomography and the evolution of surface topography. We find that flat-slab subduction induced landward shortening and lithospheric thickening, while subsequent flat-slab rollback caused seaward extension and lithospheric thinning. Both subduction phases resulted in substantial topographic changes in basin sediments. Rapid flat-slab rollback, coupled with a viscosity jump and phase change across the 660 km mantle discontinuity, was a key ingredient in shaping a large mantle wedge. We argue that craton deformation through lithospheric extension and thinning was triggered by the subduction of a flat slab and its subsequent rollback. The integration of data into mechanical models provides insights into the four-dimensional dynamic interplay involving subduction, mantle processes, craton deformation and topography.
Mesozoic deformation of the North China Craton occurred via lithospheric thickening followed by thinning and extension triggered by flat-slab subduction and rollback, according to four-dimensional mantle flow models of the plate–mantle system.
Journal Article
Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion
by
Handy, Mark R.
,
Kissling, Eduard
,
Ustaszewski, Kamil
in
Cenozoic
,
Continental margins
,
Earth and Environmental Science
2015
Palinspastic map reconstructions and plate motion studies reveal that switches in subduction polarity and the opening of slab gaps beneath the Alps and Dinarides were triggered by slab tearing and involved widespread intracrustal and crust–mantle decoupling during Adria–Europe collision. In particular, the switch from south-directed European subduction to north-directed “wrong-way” Adriatic subduction beneath the Eastern Alps was preconditioned by two slab-tearing events that were continuous in Cenozoic time: (1) late Eocene to early Oligocene rupturing of the oppositely dipping European and Adriatic slabs; these ruptures nucleated along a trench–trench transfer fault connecting the Alps and Dinarides; (2) Oligocene to Miocene steepening and tearing of the remaining European slab under the Eastern Alps and western Carpathians, while subduction of European lithosphere continued beneath the Western and Central Alps. Following the first event, post-late Eocene NW motion of the Adriatic Plate with respect to Europe opened a gap along the Alps–Dinarides transfer fault which was filled with upwelling asthenosphere. The resulting thermal erosion of the lithosphere led to the present slab gap beneath the northern Dinarides. This upwelling also weakened the upper plate of the easternmost part of the Alpine orogen and induced widespread crust–mantle decoupling, thus facilitating Pannonian extension and roll-back subduction of the Carpathian oceanic embayment. The second slab-tearing event triggered uplift and peneplainization in the Eastern Alps while opening a second slab gap, still present between the Eastern and Central Alps, that was partly filled by northward counterclockwise subduction of previously unsubducted Adriatic continental lithosphere. In Miocene time, Adriatic subduction thus jumped westward from the Dinarides into the heart of the Alpine orogen, where northward indentation and wedging of Adriatic crust led to rapid exhumation and orogen-parallel escape of decoupled Eastern Alpine crust toward the Pannonian Basin. The plate reconstructions presented here suggest that Miocene subduction and indentation of Adriatic lithosphere in the Eastern Alps were driven primarily by the northward push of the African Plate and possibly enhanced by neutral buoyancy of the slab itself, which included dense lower crust of the Adriatic continental margin.
Journal Article
Unraveling the Geodynamic Evolution of the Pre– and Early–Andean Margin: Insights From Numerical Modeling
2024
An outstanding question in the geological evolution of the Chilean Andes is the cause of the westward shift and relocation of magmatism from the High Andes (HA) to the Coastal Cordillera (CC) during the Late Triassic, Pre–Andean stage. The spatiotemporal distribution of Permian–Triassic–Jurassic igneous rocks in northern‐central Chile (20°S–32°S) reveals a significant westward magmatic shift of ∼120 km during the Norian time. Despite diverse proposed models, the precise geodynamic mechanism behind this shift remains unclear. To address this, we used 2D numerical modeling to investigate two contrasting scenarios: (a) subduction rollback and (b) subduction transference/jump and reinitiation by terrane accretion. Our modeling results strongly support Scenario B, where mantle density and the size of the oceanic plateau are crucial for triggering subduction jump and reinitiation. This model aligns with geological and geophysical evidence and offers new insights into unraveling the Pre– and Early–Andean evolution. Plain Language Summary After decades of research, the geodynamic mechanism behind the Late Triassic westward relocation of magmatism from HA to CC in northern‐central Chile remains unresolved. This study employs 2D numerical experiments to investigate two competing scenarios: subduction rollback and subduction transference/jump and reinitiation by terrane accretion. Subduction models are tailored to the Andean margin, evaluating slab geometry and magmatic arc position to best fit geological observations. Key subduction parameters such as subducting plate velocity and slab age are constrained by paleoreconstructions for the study region and period. Factors like mantle density and the size of the oceanic plateau are critical triggers for subduction jump and reinitiation. Modeling results favor the terrane accretion scenario, revealing a ∼120 km westward magmatic shift for a 300 km‐wide oceanic plateau with a depleted mantle. This aligns with geological and geophysical observations, including Late Triassic subduction initiation with a new magmatic arc in CC and a lower mantle slab gap beneath the southwestern Pangea margin due to possibly catastrophic slab loss in the Middle–Late Permian. This study shed light on previously overlooked processes like oceanic plateau accretion/obstruction, slab detachment and eduction, and subduction jump and reinitiation, advancing our understanding of Triassic Pre–Andean evolution. Key Points 2D numerical models investigate the evolution of the Pre− and Early−Andean margin through two contrasting geodynamic scenarios Modeling supports subduction transference/jump and reinitiation over subduction rollback, unraveling the Pre– and Early–Andean evolution Terrane accretion model supports a Late Triassic westward shift of the Andean magmatism, aligning with geological and geophysical evidence
Journal Article
Kinetic Sensors for Ligament Balance and Kinematic Evaluation in Anatomic Bi-Cruciate Stabilized Total Knee Arthroplasty
by
Bistolfi, Alessandro
,
Bosco, Francesco
,
Barberis, Luca
in
Arthritis
,
Design
,
femoral rollback
2021
Sensor technology was introduced to intraoperatively analyse the differential pressure between the medial and lateral compartments of the knee during primary TKA using a sensor to assess if further balancing procedures are needed to achieve a “balanced” knee. The prognostic role of epidemiological and radiological parameters was also analysed. A consecutive series of 21 patients with primary knee osteoarthritis were enrolled and programmed for TKA in our unit between 1 September 2020 and 31 March 2021. The VERASENSE Knee System (OrthoSensor Inc., Dania Beach, FL, USA) has been proposed as an instrument that quantifies the differential pressure between the compartments of the knee intraoperatively throughout the full range of motion during primary TKA, designed with a J-curve anatomical femoral design and a PS “medially congruent” polyethylene insert. Thirteen patients (61.90%) showed a “balanced” knee, and eight patients (38.10%) showed an intra-operative “unbalanced” knee and required additional procedures. A total of 13 additional balancing procedures were performed. At the end of surgical knee procedures, a quantitatively balanced knee was obtained in all patients. In addition, a correlation was found between the compartment pressure of phase I and phase II at 10° of flexion and higher absolute pressures were found in the medial compartment than in the lateral compartment in each ROM degree investigated. Moreover, those pressure values showed a trend to decrease with the increase in flexion degrees in both compartments. The “Kinetic Tracking” function displays the knee’s dynamic motion through the full ROM to evaluate joint kinetics. The obtained kinetic traces reproduced the knee’s medial pivot and femoral rollback, mimicking natural knee biomechanics. Moreover, we reported a statistically significant correlation between the need for soft tissue or bone resection rebalancing and severity of the initial coronal deformity (>10°) and a preoperative JLCA value >2°. The use of quantitative sensor-guided pressure evaluation during TKA leads to a more reproducible “balanced” knee. The surgeon, evaluating radiological parameters before surgery, may anticipate difficulties in knee balance and require those devices to achieve the desired result objectively.
Journal Article
Cenozoic geodynamic evolution of the Aegean
2010
The Aegean region is a concentrate of the main geodynamic processes that shaped the Mediterranean region: oceanic and continental subduction, mountain building, high-pressure and low-temperature metamorphism, backarc extension, post-orogenic collapse, metamorphic core complexes, gneiss domes are the ingredients of a complex evolution that started at the end of the Cretaceous with the closure of the Tethyan ocean along the Vardar suture zone. Using available plate kinematic, geophysical, petrological and structural data, we present a synthetic tectonic map of the whole region encompassing the Balkans, Western Turkey, the Aegean Sea, the Hellenic Arc, the Mediterranean Ridge and continental Greece and we build a lithospheric-scale N-S cross-section from Crete to the Rhodope massif. We then describe the tectonic evolution of this cross-section with a series of reconstructions from ~70 Ma to the Present. We follow on the hypothesis that a single subduction has been active throughout most of the Mesozoic and the entire Cenozoic, and we show that the geological record is compatible with this hypothesis. The reconstructions show that continental subduction (Apulian and Pelagonian continental blocks) did not induce slab break-off in this case. Using this evolution, we discuss the mechanisms leading to the exhumation of metamorphic rocks and the subsequent formation of extensional metamorphic domes in the backarc region during slab retreat. The tectonic histories of the two regions showing large-scale extension, the Rhodope and the Cyclades are then compared. The respective contributions to slab retreat, post-orogenic extension and lower crust partial melting of changes in kinematic boundary conditions and in nature of subducting material, from continental to oceanic, are discussed.
Journal Article
Geochemical characteristics of back-arc basin lower crust and upper mantle at final spreading stage of Shikoku Basin: an example of Mado Megamullion
2021
This paper explores the evolutional process of back-arc basin (BAB) magma system at final spreading stage of extinct BAB, Shikoku Basin (Philippine Sea) and assesses its tectonic evolution using a newly discovered oceanic core complex, the Mado Megamullion. Bulk and in-situ chemical compositions together with in-situ Pb isotope composition of dolerite, oxide gabbro, gabbro, olivine gabbro, dunite, and peridotite are presented. Compositional ranges and trends of the igneous and peridotitic rocks from the Mado Megamullion are similar to those from the slow- to ultraslow-spreading mid-ocean ridges (MOR). Since the timing of the Mado Megamullion exhumation corresponds to the very end of the Shikoku Basin opening, the magma supply was subdued and highly episodic, leading to extreme magma differentiation to form ferrobasaltic, hydrous magmas. In-situ Pb isotope composition of magmatic brown amphibole in the oxide gabbro is identical to that of depleted source mantle for mid-ocean ridge basalt (MORB). In the context of hydrous BAB magma genesis, the magmatic water was derived solely from the MORB source mantle. The distance from the back-arc spreading center to the arc front increased away through maturing of the Shikoku Basin to cause MORB-like magmatism. After the exhumation of Mado Megamullion along detachment faults, dolerite dikes intruded as a post-spreading magmatism. The final magmatism along with post-spreading Kinan Seamount Chain volcanism were introduced around the extinct back-arc spreading center after the opening of Shikoku Basin by residual mantle upwelling.
Journal Article