Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Root-associated compartments"
Sort by:
What will polyethylene film mulching bring to the root-associated microbial community of Paeonia ostii?
Plastic film mulching can increase crop yield and is widely used in agricultural production, but long-term mulching could adversely affect plant growth. To investigate the related mechanism, we studied the bacterial communities in different root-associated compartments of Paeonia ostii , a perennial oil crop, under polyethylene film mulching for three years by full-length 16S rDNA sequencing technology, and measured the soil physicochemical properties and enzyme activities. We found that enzyme activities and available nutrients in the soil tended to decrease after long-term mulching. Analysis of bacterial community composition revealed that the endosphere may be another potential source of the root-associated microbiome of P. ostii , and the rhizoplane plays a selective gating role in the enrichment processes for P. ostii microbiome assembly. Long-term mulching affected the abundance of dominant bacterial communities in different root-associated compartments and reduced the bacterial richness in the endosphere, but increased bacterial interactions in each compartment, as well as between different compartments. We speculate that this is mainly related to the decrease of litter content and the serious degradation of polyethylene film after long-term mulching, which resulted in microplastics and other harmful substances entering the soil. Our study further explained the reasons for the harm of long-term film mulching on plants to guide the rational use of plastic film. Key points • Soil enzyme activities and available nutrients decreased after long-term mulching. • Mulching affected the dominant bacterial abundance in different root-associated compartments. • Mulching increased bacterial interactions among compartments. Graphical abstract
Diversity and structure of the root-associated bacterial microbiomes of four mangrove tree species, revealed by high-throughput sequencing
Background Root-associated microbes of the mangrove trees play important roles in protecting and maintaining mangrove ecosystems. At present, most of our understanding of mangrove root-related microbial diversity is obtained from specific mangrove species in selected geographic regions. Relatively little is known about the composition of the bacterial microbiota existing in disparate mangrove species microenvironments, particularly the relationship among different mangrove species in tropical environments. Methods We collected the root, rhizosphere soil, and non-rhizosphere soil of four mangrove trees (Acanthus ilicifolius, Bruguiera gymnorrhiza, Clerodendrum inerme, and Lumnitzera racemosa) and detected the 16S rRNA gene by a conventional PCR. We performed high throughput sequencing using Illumina Novaseq 6000 platform (2x250 paired ends) to investigate the bacterial communities related with the different mangrove species. Results We analyzed the bacterial diversity and composition related to the diverse ecological niches of mangrove species. Our data confirmed distinct distribution patterns of bacterial communities in the three rhizocompartments of the four mangrove species. Microbiome composition varied with compartments and host mangrove species. The bacterial communities between the endosphere and the other two compartments were distinctly diverse independent of mangrove species. The large degree of overlap in critical community members of the same rhizocompartment across distinct mangrove species was found at the phylum level. Furthermore, this is the first report of Acidothermus found in mangrove environments. In conclusion, understanding the complicated host-microbe associations in different mangrove species could lay the foundation for the exploitation of the microbial resource and the production of secondary metabolites.
The impact of the rice production system (irrigated vs lowland) on root-associated microbiome from farmer's fields in western Burkina Faso
Abstract Due to their potential applications for food safety, there is a growing interest in rice root-associated microbial communities, but some systems remain understudied. Here, we compare the assemblage of root-associated microbiota in rice sampled in 19 small farmer's fields from irrigated and rainfed lowlands in Burkina Faso, using an amplicon metabarcoding approach of the 16S rRNA gene (prokaryotes, three plant samples per field) and ITS (fungi, one sample per field). In addition to the expected structure by root compartments (root vs rhizosphere) and geographical zones, we showed that the rice production system is a major driver of microbiome structure. In irrigated systems, we found a higher diversity of prokaryotic communities from the rhizosphere and more complex co-occurrence networks, compared to rainfed lowlands, while fungal communities exhibited an opposite pattern (higher richness in rainfed lowlands). Core taxa were different between the two systems, and indicator species were identified: mostly within Bacillaceae in rainfed lowlands, and within Burkholderiaceae and Moraxellaceae in irrigated areas. Finally, a higher abundance in rainfed lowlands was found for mycorrhizal fungi (both compartments) and rhizobia (rhizosphere only). Our results highlight deep microbiome differences induced by contrasted rice production systems that should consequently be considered for microbial engineering applications. Irrigated rice and rainfed lowlands harbor contrasted root-associated microbiomes in small farmer's fields from Burkina Faso, with contrasted richness, and peculiar indicator taxa in each system.
Structural and functional variability in root-associated bacterial microbiomes of Cd/Zn hyperaccumulator Sedum alfredii
Interactions between roots and microbes affect plant’s resistance to abiotic stress. However, the structural and functional variation of root-associated microbiomes and their effects on metal accumulation in hyperaccumulators remain poorly understood. Here, we characterize the root-associated microbiota of a hyperaccumulating (HP) and a non-hyperaccumulating (NHP) genotype of Sedum alfredii by 16S ribosomal RNA gene profiling. We show that distinct microbiomes are observed in four spatially separable compartments: the bulk soil, rhizosphere, rhizoplane, and endosphere. Both the rhizosphere and rhizoplane were preferentially colonized by Proteobacteria , and the endosphere by Actinobacteria . The rhizosphere and endophytic microbiomes were dominated by the family of Sphingomonadaceae and Streptomycetaceae , respectively, which benefited for their survival and adaptation. The bacterial α-diversity decreases along the spatial gradient from the rhizosphere to the endosphere. Soil type and compartment were strongest determinants of root-associated community variation, and host genotype explained a small, but significant amount of variation. The enrichment of Bacteroidetes and depletion of Firmicutes and Planctomycetes in the HP endosphere compared with that of the NHP genotype may affect metal hyperaccumulation. Program PICRUSt predicted moderate functional differences in bacterial consortia across rhizocompartments and soil types. The functional categories involved in membrane transporters (specifically ATP-binding cassette transporters) and energy metabolism were overrepresented in endosphere of HP in comparison with NHP genotypes. Taken together, our study reveals substantial variation in structure and function of microbiomes colonizing different compartments, with the endophytic microbiota potentially playing an important role in heavy metal hyperaccumulation.
The recruitment of bacterial communities by the plant root system changed by acid mine drainage pollution in soils
This study aims to better understand the relationship between the response to acid mine drainage (AMD) stress of tolerant plants and changes in root-related bacterial communities. In this study, reed stems were planted in AMD-polluted and unpolluted soils, and high-throughput sequencing was conducted to analyze the bacterial community composition in the soil, rhizosphere, rhizoplane and endosphere. The results showed that the effect of AMD pollution on root-associated bacterial communities was greater than that of rhizo-compartments. Proteobacteria were dominant across the rhizo-compartments between treatments. The microbiomes of unpolluted treatments were enriched by Alphaproteobacteria and Betaproteobacteria and depleted in Gammaproteobacteria ranging from the rhizoplane into the endosphere. However, the opposite trend was observed in the AMD pollution treatment, namely, Gammaproteobacteria were enriched, and Alphaproteobacteria and Deltaproteobacteria were mostly depleted. In addition, endophytic microbiomes were dominated by Comamonadaceae and Rhodocyclaceae in the unpolluted treatment and by Enterobacteriaceae in the AMD-polluted soils. PICRUSt showed that functional categories associated with membrane transport, metabolism and cellular processes and signaling processes were overrepresented in the endosphere of the AMD-polluted treatment. In conclusion, our study reveals significant variation in bacterial communities colonizing rhizo-compartments in two soils, indicating that plants can recruit functional bacteria to the roots in response to AMD pollution.
Rhizobiome diversity of field-collected hyperaccumulating Noccaea sp
Hyperaccumulating plants are able to (hyper)accumulate high concentrations of metal(loid)s in their above-ground tissues without any signs of toxicity. Studies on the root-associated microbiome have been previously conducted in relation to hyperaccumulators, yet much remains unknown about the interactions between hyperaccumulating hosts and their microbiomes, as well as the dynamics within these microbial communities. Here, we assess the impact of the plant host on shaping microbial communities of three naturally occurring populations of Noccaea species in Slovenia: Noccaea praecox and co-occurring N. caerulescens from the non-metalliferous site and N. praecox from the metalliferous site. We investigated the effect of metal enrichment on microbial communities and explored the interactions within microbial groups and their environment. The abundance of bacterial phyla was more homogeneous than fungal classes across all three Noccaea populations and across the three root-associated compartments (roots, rhizosphere, and bulk soil). While most fungal and bacterial Operational Taxonomic Units (OTUs) were found at both sites, the metalliferous site comprised more unique OTUs in the root and rhizosphere compartments than the non-metalliferous site. In contrast to fungi, bacteria exhibited differentially significant abundance between the metalliferous and non-metalliferous sites as well as statistically significant correlations with most of the soil parameters. Results revealed N. caerulescens had the highest number of negative correlations between the bacterial phyla, whereas the population from the metalliferous site had the fewest. This decrease was accompanied by a big perturbation in the bacterial community at the metalliferous site, indicating increased selection between the bacterial taxa and the formation of potentially less stable rhizobiomes. These findings provide fundamentals for future research on the dynamics between hyperaccumulators and their associated microbiome.
Assembly and variation of root-associated microbiota of rice during their vegetative growth phase with and without lindane pollutant
*Ÿ Rice microbiota responded to lindane pollutant was studied spatiotemporally. *ŸŸ Growth time, soil types and rhizo-compartments had significant influence. Ÿ Lindane stimulated the endosphere microbiota of rice which was highly dynamic. *ŸŸ Root-soil-microbe interactions induced an inhibited redox-coupled lindane removal. *ŸŸ This work was beneficial to better regulation of plant growth against adversity. Soil-derived microbiota associated with plant roots are conducive to plant growth and stress resistance. However, the spatio-temporal dynamics of microbiota in response to organochlorine pollution during the unstable vegetative growth phase of rice is not well understood. In this study, we focused on the rice ( Oryza sativa L.) microbiota across the bulk soil, rhizosphere and endosphere compartments during the vegetative growth phase in two different soils with and without lindane pollutant. The results showed that the factors of growth time, soil types and rhizo-compartment had significant influence on the microbial communities of rice, while lindane mostly stimulated the construction of endosphere microbiota at the vegetative phase. Active rice root -soil -microbe interactions induced an inhibition effect on lindane removal at the later vegetative growth phase in rice-growth-dependent anaerobic condition, likely due to the root oxygen loss and microbial mediated co-occurring competitive electron-consuming redox processes in soils. Each rhizo-compartment owned distinct microbial communities, and therefore, presented specific ecologically functional categories, while the moderate functional differences were also affected by plants species and residual pollution stress. This work revealed the underground micro-ecological process of microbiota and especially their potential linkage to the natural attenuation of residual organochlorine such as lindane.
Alhagi sparsifolia Harbors a Different Root-Associated Mycobiome during Different Development Stages
The mycobiome in the rhizosphere and within the roots benefits the nutrition and function of host plants. However, compared with the bacterial community, root-associated mycobiomes of desert plants and the forces that drive their assemblage are limited. Here, we investigated the mycobiomes in bulk soil, rhizosphere, and root compartments of Alhagi sparsifolia Shap., a phreatophyte species dominating in Central Asia. The internal transcribed spacer (ITS) gene phylogenetic profiles displayed significantly diverse mycobiomes across three compartments and host growth times, together explaining 31.45% of the variation in the community composition. The community structure of the perennial stage was markedly different from that of other stages (30 days to 2 years old). Along the soil–plant continuum, the α-diversity (estimated by Chao1) decreased gradually, while concomitantly increasing the community dissimilarity and the influence of edaphic factors. Specific leaf area, soil water content, and soil organic matter levels were common factors driving the composition of the three mycobiome communities. A more complex and connected network was observed in the root community compared with the other compartments. Overall, our work suggests that an age-sensitive host effect restructured the desert-plant-root-associated mycobiome, and that edaphic factors and host growth strategy may play potential roles in this process.