Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,489 result(s) for "Rosmarinic acid"
Sort by:
Novel Phenolic Constituents of Pulmonaria officinalis L. LC-MS/MS Comparison of Spring and Autumn Metabolite Profiles
Lungwort (Pulmonaria officinalis L., Boraginaceae) is considered to possess therapeutic properties and it has been traditionally used as a remedy against various lung disorders in many countries. Nevertheless, very few data concerning its phytochemical composition are available. This research aims to provide a detailed description of specialized metabolites from the aerial parts of lungwort. Nine previously undescribed and 36 known phenolic compounds were detected in the 50% methanolic extract. Following multistep preparative procedures, structures of newly discovered compounds were determined using one- and two-dimensional techniques of NMR spectroscopy. Among the identified compounds were caffeic acid esters with aliphatic hydroxycarboxylic acids, conjugates of dicaffeic acid with rosmarinic acid, and previously unknown isomers of isosalvianolic acid A and yunnaneic acid E, as well as other lignans. Concentrations of all identified phenolic derivatives in the investigated herbal material were estimated using a method based on liquid chromatography with high-resolution mass spectrometry detection. Seasonal changes in the concentration of metabolites were also investigated using targeted and untargeted metabolomics techniques.
Development and Validation of an HPLC-DAD Method for the Quantitative Determination of Benzoyl Peroxide, Curcumin, Rosmarinic Acid, Resveratrol and Salicylic Acid in a Face Mask—In Vitro/Ex Vivo Permeability Study
Acne is a common skin condition that causes pimples, redness and inflammation. Benzoyl peroxide (BENZ), salicylic acid (SAL), curcumin (CUR), rosmarinic acid (ROS) and resveratrol (RESV) exhibit antimicrobial, anti-inflammatory and antioxidant properties and are recommended for its treatment. These five active pharmaceutical ingredients (APIs) were incorporated into a green clay, honey and gelatin face mask and determined by an HPLC-DAD (diode array) method. For the chromatographic separation of the analytes, a gradient mobile phase with two solvents mixtures: A, comprising H2O with 0.1% TFA-ACN with 0.1% TFA, 85:15 v/v, and B, comprising 100% ACN with 0.1% TFA, and a C18 column (250 × 4.6 mm, 5 μm), at 40 °C (diluent: MeOH-ACN 0.1% TFA 2:1 v/v), were selected. The method was validated according to the ICH guidelines for pharmaceutical products (R2 > 0.999, %RSD < 1.2, % Recovery > 98.2, LODμg/mL: ROS = 0.267, RES = 0.047, SAL = 0.636, CUR = 0.296 and BENZ = 0.083). For the processing of mask samples and the quantitative extraction of the analytes, the “D-optima mixture” experimental design methodology was applied (% Recovery 95.4–102.1%, %RSD < 2.4). Finally, the permeability rate (Papp) of the mask ingredients through the skin was studied using Franz vertical diffusion cells, in a cellulose membrane (in vitro), in rat tissue and in human skin (ex vivo). To ensure the reliability of the results, APIs’ stability rate under the given experimental conditions was studied. In addition, a second method for sample processing in Franz cells was developed and validated (% Recovery > 90.6–106.9, %RSD < 5.2). Based on the results obtained, both the effectiveness of the new face mask formulation and the suitability of the membranes were evaluated.
Assessment of Stability and Degradation Kinetics of Carnosic and Rosmarinic Acid in Edible Oil and Its Effectiveness as an Extraction Medium Compared to Other Solvents
The aim of this study was to compare the effectiveness of edible oil (as an extractant) for the extraction of CA (carnosic acid), C (carnosol), and RA (rosmarinic acid) from sage with popular solvents (methanol, ethanol, 70% methanol, 70% ethanol, and water), as well as to assess the stability and fit the kinetic reaction model to the course of CA and RA degradation in oil macerate and various extracts. The degradation rate constant and half-life of CA and RA were also estimated and compared. CA was most efficiently extracted from sage using ethanol and methanol (9.3–10.1 mg/g of sage), followed by oil (7.10 mg/g). For C and RA, the most suitable solvents were 70% ethanol and 70% methanol (C: 3.08–4.01 mg/g; RA: 19.16–20.24 mg/g). CA was most stable in oil, followed by ethanol > methanol > 70% ethanol > 70% methanol. CA degradation followed a first-order kinetic model. RA was very stable in all extracts, except water, where the kinetics of RA degradation most closely followed a second-order model. Although oil extracts smaller amounts of phytochemicals from sage than solvents, CA in oil was the most stable, and the maceration of sage in oil is safe and consistent with the concept of sustainable development.
The Selective Separation of Carnosic Acid and Rosmarinic Acid by Solid-Phase Extraction and Liquid–Liquid Extraction: A Comparative Study
Rosmarinus officinalis leaves (ROLs) are widely used in the food and cosmetics industries due to their high antioxidant activity and fascinating flavor properties. Carnosic acid (CA) and rosmarinic acid (RA) are regarded as the characteristic antioxidant components of ROLs, and the selective separation of CA and RA remains a significant challenge. In this work, the feasibility of achieving the selective separation of CA and RA from ROLs by solid-phase extraction (SPE) and liquid–liquid extraction (LLE) was studied and compared. The experiments suggested that SPE with CAD-40 macroporous resin as the adsorbent was a good choice for selectively isolating CA from the extracts of ROLs and could produce raw CA with purity levels as high as 76.5%. The LLE with ethyl acetate (EA) as the extraction solvent was more suitable for extracting RA from the diluted extracts of ROLs and could produce raw RA with a purity level of 56.3%. Compared with the reported column chromatography and LLE techniques, the developed SPE–LLE method not only exhibited higher extraction efficiency for CA and RA, but can also produce CA and RA with higher purity.
Rosmarinic acid elicits neuroprotection in ischemic stroke via Nrf2 and heme oxygenase 1 signaling
Rosmarinic acid (RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in CD-1 mice (Beijing Vital River Laboratory Animal Technology, Beijing, China) by occluding the right middle cerebral artery for 1 hour and allowing reperfusion for 24 hours. After intraperitoneally injecting model mice with 10, 20, or 40 mg/kg RA, functional neurological deficits were evaluated using modified Longa scores. Subsequently, cerebral infarct volume was measured using TTC staining and ischemic brain tissue was examined for cell apoptosis with TUNEL staining. Superoxide dismutase activity and malondialdehyde levels were measured by spectrophometry. Expression of heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2), Bcl-2, Bax, Akt, and phospho-Ser473 Akt proteins in ischemic brain tissue was detected by western blot, while mRNA levels of Nrf2, HO-1, Bcl-2, and Bax were analyzed using real time quantitative PCR. In addition, HO-1 enzyme activity was measured spectrophotometrically. RA (20 and 40 mg/kg) greatly improved neurological function, reduced infarct volume, decreased cell apoptosis, upregulated Bcl-2 protein and mRNA expression, downregulated Bax protein and mRNA expression, increased HO-1 and Nrf2 protein and mRNA expression, increased superoxide dismutase activity, and decreased malondialdehyde levels in ischemic brain tissue of model mice. However, intraperitoneal injection of a HO-1 inhibitor (10 mg/kg zinc protoporphyrin IX) reversed the neuroprotective effects of RA on HO-1 enzyme activity and Bcl-2 and Bax protein expression. The PI3K/Akt signaling pathway inhibitor LY294002 (10 mM) inhibited Akt phosphorylation, as well as Nrf2 and HO-1 expression. Our findings suggest that RA has anti-oxidative and anti-apoptotic properties that protect against ischemic stroke by a mechanism involving upregulation of Nrf2 and HO-1 expression via the PI3K/Akt signaling pathway.
Systematic characterization of gene families and functional analysis of PvRAS3 and PvRAS4 involved in rosmarinic acid biosynthesis in Prunella vulgaris
Prunella vulgaris is an important material for Chinese medicines with rosmarinic acid (RA) as its index component. Based on the chromosome-level genome assembly we obtained recently, 51 RA biosynthesis-related genes were identified. Sequence feature, gene expression pattern and phylogenetic relationship analyses showed that 17 of them could be involved in RA biosynthesis. In vitro enzymatic assay showed that PvRAS3 catalyzed the condensation of p -coumaroyl-CoA and caffeoyl-CoA with pHPL and DHPL. Its affinity toward p -coumaroyl-CoA was higher than caffeoyl-CoA. PvRAS4 catalyzed the condensation of p -coumaroyl-CoA with pHPL and DHPL. Its affinity toward p -coumaroyl-CoA was lower than PvRAS3. UPLC and LC-MS/MS analyses showed the existence of RA, 4-coumaroyl-3’,4’-dihydroxyphenyllactic acid, 4-coumaroyl-4’-hydroxyphenyllactic acid and caffeoyl-4’-hydroxyphenyllactic acid in P. vulgaris . Generation and analysis of pvras3 homozygous mutants showed significant decrease of RA, 4-coumaroyl-3’,4’-dihydroxyphenyllactic acid, 4-coumaroyl-4’-hydroxyphenyllactic acid and caffeoyl-4’-hydroxyphenyllactic acid and significant increase of DHPL and pHPL. It suggests that PvRAS3 is the main enzyme catalyzing the condensation of acyl donors and acceptors during RA biosynthesis. The role of PvRAS4 appears minor. The results provide significant information for quality control of P. vulgaris medicinal materials.
Enhancement of Rosmarinic Acid Production in Hairy Root Cultures of Perovskia atriplicifolia Benth
This study reports the first successful establishment of Perovskia atriplicifolia hairy root cultures using Rhizobium rhizogenes and evaluates their potential for bioactive phenolic acid production, particularly rosmarinic acid (RA). Hairy roots were induced using two R. rhizogenes strains, A4 and ATCC 15834; transformation was confirmed by PCR analysis targeting the rol and aux genes. The A4 strain exhibited higher transformation efficiency (41.3%) than ATCC 15834 (30.2%). Eight transgenic root clones (C1–C8) were established and confirmed as transformed. The clones exhibited significant variation in biomass accumulation and phenolic acid production. RA production was most strongly correlated with PAL, RAS, and CYP98A14 expression. Hierarchical clustering clustered the clones into three groups based on growth, metabolite content, and gene expression. Lines C1 and C2 exhibiting the highest RA, total polyphenol content, and the highest productivity were selected for further experiments. McCown Woody Plant (WP) and Schenk and Hildebrandt (SH) media demonstrated the greatest biomass accumulation, with growth indexes exceeding 13. Conversely, Gamborg (B5) medium enhanced RA content, achieving 38.3 and 40.8 mg/g dry weight (DW) for clones C1 and C2, respectively, representing a fourfold increase compared to the least favorable Murashige and Skoog (MS) medium. These findings establish P. atriplicifolia hairy roots as efficient systems for RA biosynthesis and can provide a basis for metabolic engineering and scale-up production of phenolic acids in medicinal plants.
Identification and biochemical characterisation of tyrosine aminotransferase from Anthoceros agrestis unveils the conceivable entry point into rosmarinic acid biosynthesis in hornworts
The presence of rosmarinic acid (RA) in the hornwort A. agrestis is well known, and some attempts have been made to clarify the biosynthesis of this caffeic acid ester in lower plants. Parallel to the biosynthesis in vascular plants, the involvement of tyrosine aminotransferase (EC 2.6.1.5; TAT) as the initial step was assumed. The amplification of a nucleotide sequence putatively encoding AaTAT (Genbank MN922307) and expression in E. coli were successful. The enzyme proved to have a high acceptance of L-tyrosine (K m 0.53 mM) whilst slightly preferring 2-oxoglutarate over phenylpyruvate as co-substrate. Applying L-phenylalanine as a potential amino donor or using oxaloacetate or pyruvate as a replacement for 2-oxoglutarate as amino acceptor resulted in significantly lower catalytic efficiencies in each of these cases. To facilitate further substrate search, two methods were introduced, one using ninhydrin after thin-layer chromatography and the other using derivatisation with o-phthalaldehyde followed by HPLC or LC–MS analysis. Both methods proved to be well applicable and helped to confirm the acceptance of further aromatic and aliphatic amino acids. This work presents the first description of a heterologously expressed TAT from a hornwort (A. agrestis) and describes the possible entry into the biosynthesis of RA and other specialised compounds in a so far neglected representative of terrestrial plants and upcoming new model organism.
Rosmarinic Acid inhibits Pseudorabies Virus (PRV) infection by activating the cGAS-STING signaling pathway
Pseudorabies virus (PRV), a swine alphaherpesvirus, is a double-stranded DNA virus. It may infect various animals, especially pigs. PRV infection in pigs leads to high mortality rates, and causes huge economic lose for swine industry. Currently, there are few effective antiviral treatments available. Rosmarinic acid (RA), a hydrophilic phenolic compound, shows potential for inhibiting herpes simplex virus. Given that PRV is a member of the Herpesviridae family, this study investigated the antiviral effects of RA against PRV infection through both in vitro and in vivo, as well as the underlying molecular mechanisms. PK-15 cells were used to assess the cytotoxicity of RA in vitro, followed by an investigation of its anti-PRV activity. The study then explored how RA regulates the cGAS-STING signaling pathway, along with inflammatory and apoptotic factors in PRV-infected cells. Molecular docking and dynamics simulations further elucidated the binding interactions between RA and cGAS-STING, providing insight into how RA activates the cGAS-STING pathway against PRV infection. In vivo, the antiviral efficacy of RA was evaluated in a PRV-infected mouse model by assessing tissue viral genome copies, the innate immune cGAS-STING signaling pathway activation, and inflammatory and apoptotic responses. The results showed that RA exhibited a half-maximal cytotoxic concentration (CC 50 ) of 26.23 µg/mL on PK-15 cells and a half-maximal inhibitory concentration (IC 50 ) of 0.84 µg/mL against PRV, resulting in a selectivity index (SI) of 31.22. These findings suggest that RA is a highly effective and low-toxicity compound. RA significantly inhibited PRV adsorption, penetration, and replication within cells. Additionally, while PRV infection suppresses the cGAS-STING signaling pathway, RA treatment activates the innate immune response, enhances downstream antiviral effector IFN-β expression, and reduces inflammation and apoptosis in PRV-infected cells. Molecular docking results showed that the docking scores of cGAS_RA and STING_RA complexes were both less than − 5 kcal/mol, suggesting that RA binds well to cGAS and STING proteins. Molecular dynamics simulations, including RMSD, RMSF, and MM-GBSA analyses, confirmed the high binding stability of cGAS with RA, further validating the potential activity of RA as a cGAS agonist. In vivo studies revealed that RA dramatically lowered viral genome copies in various organs, activated the cGAS-STING signaling pathway, inhibited PRV-induced inflammation and apoptosis, alleviated clinical symptoms, and decreased mortality rate in PRV-infected mice. Overall, RA significantly inhibited PRV proliferation in vitro and in vivo, effectively reduced inflammation and apoptosis, and decreased the mortality rate in infected mice. The study supports the development of RA as an antiviral drug and emphasizes its potential as a candidate for PRV therapy.
An Integrated In Silico and In Vitro Approach for the Identification of Natural Products Active against SARS-CoV-2
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has provoked a global health crisis due to the absence of a specific therapeutic agent. 3CLpro (also known as the main protease or Mpro) and PLpro are chymotrypsin-like proteases encoded by the SARS-CoV-2 genome, and play essential roles during the virus lifecycle. Therefore, they are recognized as a prospective therapeutic target in drug discovery against SARS-CoV-2 infection. Thus, this work aims to collectively present potential natural 3CLpro and PLpro inhibitors by in silico simulations and in vitro entry pseudotype-entry models. We screened luteolin-7-O-glucuronide (L7OG), cynarin (CY), folic acid (FA), and rosmarinic acid (RA) molecules against PLpro and 3CLpro through a luminogenic substrate assay. We only reported moderate inhibitory activity on the recombinant 3CLpro and PLpro by L7OG and FA. Afterward, the entry inhibitory activity of L7OG and FA was tested in cell lines transduced with the two different SARS-CoV-2 pseudotypes harboring alpha (α) and omicron (o) spike (S) protein. The results showed that both compounds have a consistent inhibitory activity on the entry for both variants. However, L7OG showed a greater degree of entry inhibition against α-SARS-CoV-2. Molecular modeling studies were used to determine the inhibitory mechanism of the candidate molecules by focusing on their interactions with residues recognized by the protease active site and receptor-binding domain (RBD) of spike SARS-CoV-2. This work allowed us to identify the binding sites of FA and L7OG within the RBD domain in the alpha and omicron variants, demonstrating how FA is active in both variants. We have confidence that future in vivo studies testing the safety and effectiveness of these natural compounds are warranted, given that they are effective against a variant of concerns.