Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
691
result(s) for
"Rotational flow and vorticity"
Sort by:
Fluid–structure interaction of a square cylinder at different angles of attack
by
Leontini, Justin S.
,
Zhao, Jisheng
,
Lo Jacono, David
in
Engineering Sciences
,
Exact sciences and technology
,
Flow velocity
2014
This study investigates the free transverse flow-induced vibration (FIV) of an elastically mounted low-mass-ratio square cylinder in a free stream, at three different incidence angles:
${{\\alpha }}=0^\\circ $
,
$20^\\circ $
and
$45^\\circ $
. This geometric setup presents a body with an angle of attack, sharp corners and some afterbody, and therefore is a generic body that can be used to investigate a wide range of FIV phenomena. A recent study by Nemes et al. (J. Fluid Mech., vol. 710, 2012, pp. 102–130) provided a broad overview of the flow regimes present as a function of both the angle of attack
${{\\alpha }}$
and reduced flow velocity
${U^{*}}$
. Here, the focus is on the three aforementioned representative angles of attack:
${{\\alpha }}=0^\\circ $
, where the FIV is dominated by transverse galloping;
${{\\alpha }}=45^\\circ $
, where the FIV is dominated by vortex-induced vibration (VIV); and an intermediate value of
${{\\alpha }}=20^\\circ $
, where the underlying FIV phenomenon has previously been difficult to determine. For the
${{\\alpha }}=0^\\circ $
case, the amplitude of oscillation increases linearly with the flow speed except for a series of regimes that occur when the vortex shedding frequency is in the vicinity of an odd-integer multiple of the galloping oscillation frequency, and the vortex shedding synchronizes to this multiple of the oscillation frequency. It is shown that only odd-integer multiple synchronizations should occur. These synchronizations explain the ‘kinks’ in the galloping amplitude response for light bodies first observed by Bearman et al. (J. Fluids Struct., vol. 1, 1987, pp. 19–34). For the
${{\\alpha }}=45^\\circ $
case, the VIV response consists of a number of subtle, but distinctly different regimes, with five regimes of high-amplitude oscillations, compared to two found in the classic VIV studies of a circular cylinder. For the intermediate
${{\\alpha }}=20^\\circ $
case, a typical VIV ‘upper branch’ occurs followed by a ‘higher branch’ of very large-amplitude response. The higher branch is caused by a subharmonic synchronization between the vortex shedding and the body oscillation frequency, where two cycles of vortex shedding occur over one cycle of oscillation. It appears that this subharmonic synchronization is a direct result of the asymmetric body. Overall, the FIV of the square cylinder is shown to be very rich, with a number of distinct regimes, controlled by both
${{\\alpha }}$
and
${U^{*}}$
. Importantly,
${{\\alpha }}$
controls the underlying FIV phenomenon, as well as controlling the types of possible synchronization between the oscillation and vortex shedding.
Journal Article
Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding
by
Granlund, Kenneth
,
Ramesh, Kiran
,
Gopalarathnam, Ashok
in
Aerodynamics
,
Applied fluid mechanics
,
Exact sciences and technology
2014
Unsteady aerofoil flows are often characterized by leading-edge vortex (LEV) shedding. While experiments and high-order computations have contributed to our understanding of these flows, fast low-order methods are needed for engineering tasks. Classical unsteady aerofoil theories are limited to small amplitudes and attached leading-edge flows. Discrete-vortex methods that model vortex shedding from leading edges assume continuous shedding, valid only for sharp leading edges, or shedding governed by ad-hoc criteria such as a critical angle of attack, valid only for a restricted set of kinematics. We present a criterion for intermittent vortex shedding from rounded leading edges that is governed by a maximum allowable leading-edge suction. We show that, when using unsteady thin aerofoil theory, this leading-edge suction parameter (LESP) is related to the
$\\def \\xmlpi #1{}\\def \\mathsfbi #1{\\boldsymbol {\\mathsf {#1}}}\\let \\le =\\leqslant \\let \\leq =\\leqslant \\let \\ge =\\geqslant \\let \\geq =\\geqslant \\def \\Pr {\\mathit {Pr}}\\def \\Fr {\\mathit {Fr}}\\def \\Rey {\\mathit {Re}}A_0$
term in the Fourier series representing the chordwise variation of bound vorticity. Furthermore, for any aerofoil and Reynolds number, there is a critical value of the LESP, which is independent of the motion kinematics. When the instantaneous LESP value exceeds the critical value, vortex shedding occurs at the leading edge. We have augmented a discrete-time, arbitrary-motion, unsteady thin aerofoil theory with discrete-vortex shedding from the leading edge governed by the instantaneous LESP. Thus, the use of a single empirical parameter, the critical-LESP value, allows us to determine the onset, growth, and termination of LEVs. We show, by comparison with experimental and computational results for several aerofoils, motions and Reynolds numbers, that this computationally inexpensive method is successful in predicting the complex flows and forces resulting from intermittent LEV shedding, thus validating the LESP concept.
Journal Article
Flow-induced vibrations of a rotating cylinder
by
Lo Jacono, David
,
Bourguet, Rémi
in
Engineering Sciences
,
Exact sciences and technology
,
Flow control
2014
The flow-induced vibrations of a circular cylinder, free to oscillate in the cross-flow direction and subjected to a forced rotation about its axis, are analysed by means of two- and three-dimensional numerical simulations. The impact of the symmetry breaking caused by the forced rotation on the vortex-induced vibration (VIV) mechanisms is investigated for a Reynolds number equal to $100$, based on the cylinder diameter and inflow velocity. The cylinder is found to oscillate freely up to a rotation rate (ratio between the cylinder surface and inflow velocities) close to $4$. Under forced rotation, the vibration amplitude exhibits a bell-shaped evolution as a function of the reduced velocity (inverse of the oscillator natural frequency) and reaches $1.9$ diameters, i.e. three times the maximum amplitude in the non-rotating case. The free vibrations of the rotating cylinder occur under a condition of wake–body synchronization similar to the lock-in condition driving non-rotating cylinder VIV. The largest vibration amplitudes are associated with a novel asymmetric wake pattern composed of a triplet of vortices and a single vortex shed per cycle, the ${\\rm T} + {\\rm S}$ pattern. In the low-frequency vibration regime, the flow exhibits another new topology, the U pattern, characterized by a transverse undulation of the spanwise vorticity layers without vortex detachment; consequently, free oscillations of the rotating cylinder may also develop in the absence of vortex shedding. The symmetry breaking due to the rotation is shown to directly impact the selection of the higher harmonics appearing in the fluid force spectra. The rotation also influences the mechanism of phasing between the force and the structural response.
Journal Article
On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism
by
BEARMAN, P. W.
,
ASSI, G. R. S.
,
MENEGHINI, J. R.
in
Cylinders
,
Energy transfer
,
Exact sciences and technology
2010
The mechanism of wake-induced vibrations (WIV) of a pair of cylinders in a tandem arrangement is investigated by experiments. A typical WIV response is characterized by a build-up of amplitude persisting to high reduced velocities; this is different from a typical vortex-induced vibration (VIV) response, which occurs in a limited resonance range. We suggest that WIV of the downstream cylinder is excited by the unsteady vortex–structure interactions between the body and the upstream wake. Coherent vortices interfering with the downstream cylinder induce fluctuations in the fluid force that are not synchronized with the motion. A favourable phase lag between the displacement and the fluid force guarantees that a positive energy transfer from the flow to the structure sustains the oscillations. If the unsteady vortices are removed from the wake of the upstream body then WIV will not be excited. An experiment performed in a steady shear flow turned out to be central to the understanding of the origin of the fluid forces acting on the downstream cylinder.
Journal Article
Koopman-mode decomposition of the cylinder wake
2013
The Koopman operator provides a powerful way of analysing nonlinear flow dynamics using linear techniques. The operator defines how observables evolve in time along a nonlinear flow trajectory. In this paper, we perform a Koopman analysis of the first Hopf bifurcation of the flow past a circular cylinder. First, we decompose the flow into a sequence of Koopman modes, where each mode evolves in time with one single frequency/growth rate and amplitude/phase, corresponding to the complex eigenvalues and eigenfunctions of the Koopman operator, respectively. The analytical construction of these modes shows how the amplitudes and phases of nonlinear global modes oscillating with the vortex shedding frequency or its harmonics evolve as the flow develops and later sustains self-excited oscillations. Second, we compute the dynamic modes using the dynamic mode decomposition (DMD) algorithm, which fits a linear combination of exponential terms to a sequence of snapshots spaced equally in time. It is shown that under certain conditions the DMD algorithm approximates Koopman modes, and hence provides a viable method to decompose the flow into saturated and transient oscillatory modes. Finally, the relevance of the analysis to frequency selection, global modes and shift modes is discussed.
Journal Article
Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers
by
TAIRA, KUNIHIKO
,
COLONIUS, TIM
in
Aerodynamics
,
Applied fluid mechanics
,
Exact sciences and technology
2009
Three-dimensional flows over impulsively translated low-aspect-ratio flat plates are investigated for Reynolds numbers of 300 and 500, with a focus on the unsteady vortex dynamics at post-stall angles of attack. Numerical simulations, validated by an oil tow-tank experiment, are performed to study the influence of aspect ratio, angle of attack and planform geometry on the wake vortices and the resulting forces on the plate. Immediately following the impulsive start, the separated flows create wake vortices that share the same topology for all aspect ratios. At large time, the tip vortices significantly influence the vortex dynamics and the corresponding forces on the wings. Depending on the aspect ratio, angle of attack and Reynolds number, the flow at large time reaches a stable steady state, a periodic cycle or aperiodic shedding. For cases of high angles of attack, an asymmetric wake develops in the spanwise direction at large time. The present results are compared to higher Reynolds number flows. Some non-rectangular planforms are also considered to examine the difference in the wakes and forces. After the impulsive start, the time at which maximum lift occurs is fairly constant for a wide range of flow conditions during the initial transient. Due to the influence of the tip vortices, the three-dimensional dynamics of the wake vortices are found to be quite different from the two-dimensional von Kármán vortex street in terms of stability and shedding frequency.
Journal Article
The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair
by
Sherwin, S. J.
,
Assi, G. R. S.
,
Meneghini, J. R.
in
Downstream
,
Exact sciences and technology
,
Flow velocity
2013
When a pair of tandem cylinders is immersed in a flow the downstream cylinder can be excited into wake-induced vibrations (WIV) due to the interaction with vortices coming from the upstream cylinder. Assi, Bearman & Meneghini (J. Fluid Mech., vol. 661, 2010, pp. 365–401) concluded that the WIV excitation mechanism has its origin in the unsteady vortex–structure interaction encountered by the cylinder as it oscillates across the wake. In the present paper we investigate how the cylinder responds to that excitation, characterising the amplitude and frequency of response and its dependency on other parameters of the system. We introduce the concept of wake stiffness, a fluid dynamic effect that can be associated, to a first approximation, with a linear spring with stiffness proportional to
$\\mathit{Re}$
and to the steady lift force occurring for staggered cylinders. By a series of experiments with a cylinder mounted on a base without springs we verify that such wake stiffness is not only strong enough to sustain oscillatory motion, but can also dominate over the structural stiffness of the system. We conclude that while unsteady vortex–structure interactions provide the energy input to sustain the vibrations, it is the wake stiffness phenomenon that defines the character of the WIV response.
Journal Article
Sensitivity analysis and passive control of cylinder flow
by
JACQUIN, LAURENT
,
SIPP, DENIS
,
MARQUET, OLIVIER
in
Base flow
,
Exact sciences and technology
,
Flow alteration
2008
A general theoretical formalism is developed to assess how base-flow modifications may alter the stability properties of flows studied in a global approach of linear stability theory. It also comprises a systematic approach to the passive control of globally unstable flows by the use of small control devices. This formalism is based on a sensitivity analysis of any global eigenvalue to base-flow modifications. The base-flow modifications investigated are either arbitrary or specific ones induced by a steady force. This leads to a definition of the so-called sensitivity to base-flow modifications and sensitivity to a steady force. These sensitivity analyses are applied to the unstable global modes responsible for the onset of vortex shedding in the wake of a cylinder for Reynolds numbers in the range 47≤Re≤80. First, it is demonstrated how the sensitivity to arbitrary base-flow modifications may be used to identify regions and properties of the base flow that contribute to the onset of vortex shedding. Secondly, the sensitivity to a steady force determines the regions of the flow where a steady force acting on the base flow stabilizes the unstable global modes. Upon modelling the presence of a control device by a steady force acting on the base flow, these predictions are then extensively compared with the experimental results of Strykowski & Sreenivasan (J. Fluid Mech., vol. 218, 1990, p. 71). A physical interpretation of the suppression of vortex shedding by use of a control cylinder is proposed in the light of the sensitivity analysis.
Journal Article
The finite-length square cylinder near wake
2009
This paper reports an experimental investigation of the near wake of a finite-length square cylinder, with one end mounted on a flat plate and the other free. The cylinder aspect ratio or height-to-width ratio H/d ranges from 3 to 7. Measurements were carried out mainly in a closed-loop low-speed wind tunnel at a Reynolds number Red, based on d and the free-stream velocity of 9300 using hot-wire anemometry, laser Doppler anemometry and particle image velocimetry (PIV). The planar PIV measurements were performed in the three orthogonal planes of the three-dimensional cylinder wake, along with flow visualization conducted simultaneously in two orthogonal planes (Red = 221). Three types of vortices, i.e. the tip, base and spanwise vortices were observed and the near wake is characterized by the interactions of these vortices. Both flow visualization and two-point correlation point to an inherent connection between the three types of vortices. A model is proposed for the three-dimensional flow structure based on the present measurements, which is distinct from previously proposed models. The instantaneous flow structure around the cylinder is arch-type, regardless of H/d, consisting of two spanwise vortical ‘legs’, one on each side of the cylinder, and their connection or ‘bridge’ near the free end. Both tip and base vortices are the streamwise projections of the arch-type structure in the (y, z) plane, associated with the free-end downwash flow and upwash flow from the wall, respectively. Other issues such as the topological characteristics, spatial arrangement and interactions among the vortical structures are also addressed.
Journal Article
Low-Reynolds-number wakes of elliptical cylinders: from the circular cylinder to the normal flat plate
by
Radi, Alexander
,
Hourigan, Kerry
,
Thompson, Mark C.
in
Base flow
,
Exact sciences and technology
,
Fluid dynamics
2014
While the wake of a circular cylinder and, to a lesser extent, the normal flat plate have been studied in considerable detail, the wakes of elliptic cylinders have not received similar attention. However, the wakes from the first two bodies have considerably different characteristics, in terms of three-dimensional transition modes, and near- and far-wake structure. This paper focuses on elliptic cylinders, which span these two disparate cases. The Strouhal number and drag coefficient variations with Reynolds number are documented for the two-dimensional shedding regime. There are considerable differences from the standard circular cylinder curve. The different three-dimensional transition modes are also examined using Floquet stability analysis based on computed two-dimensional periodic base flows. As the cylinder aspect ratio (major to minor axis) is decreased, mode A is no longer unstable for aspect ratios below 0.25, as the wake deviates further from the standard Bénard–von Kármán state. For still smaller aspect ratios, another three-dimensional quasi-periodic mode becomes unstable, leading to a different transition scenario. Interestingly, for the 0.25 aspect ratio case, mode A restabilises above a Reynolds number of approximately 125, allowing the wake to return to a two-dimensional state, at least in the near wake. For the flat plate, three-dimensional simulations show that the shift in the Strouhal number from the two-dimensional value is gradual with Reynolds number, unlike the situation for the circular cylinder wake once mode A shedding develops. Dynamic mode decomposition is used to characterise the spatially evolving character of the wake as it undergoes transition from the primary Bénard–von Kármán-like near wake into a two-layered wake, through to a secondary Bénard–von Kármán-like wake further downstream, which in turn develops an even longer wavelength unsteadiness. It is also used to examine the differences in the two- and three-dimensional near-wake state, showing the increasing distortion of the two-dimensional rollers as the Reynolds number is increased.
Journal Article