Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
86
result(s) for
"Rotenone - therapeutic use"
Sort by:
The mitochondrial negative regulator MCJ is a therapeutic target for acetaminophen-induced liver injury
by
Barbier-Torres, Lucía
,
Zubiete-Franco, Imanol
,
Anguita, Juan
in
631/80/642/333
,
692/4020/4021/1607/2749
,
Acetaminophen
2017
Acetaminophen (APAP) is the active component of many medications used to treat pain and fever worldwide. Its overuse provokes liver injury and it is the second most common cause of liver failure. Mitochondrial dysfunction contributes to APAP-induced liver injury but the mechanism by which APAP causes hepatocyte toxicity is not completely understood. Therefore, we lack efficient therapeutic strategies to treat this pathology. Here we show that APAP interferes with the formation of mitochondrial respiratory supercomplexes via the mitochondrial negative regulator MCJ, and leads to decreased production of ATP and increased generation of ROS. In vivo treatment with an inhibitor of MCJ expression protects liver from acetaminophen-induced liver injury at a time when
N
-acetylcysteine, the standard therapy, has no efficacy. We also show elevated levels of MCJ in the liver of patients with acetaminophen overdose. We suggest that MCJ may represent a therapeutic target to prevent and rescue liver injury caused by acetaminophen.
Acetaminophen-induced liver injury is one of the most common causes of liver failure and has to be treated within hours of the overdose. Here Barbier-Torres et al. show that targeting MCJ, a mitochondrial negative regulator, even 24 h after the overdose protects liver from acetaminophen-induced damage.
Journal Article
Neuroprotective effects of linagliptin in a rotenone-induced rat model of Parkinson's disease
2022
The present study investigates the antiParkinsonian activity of dipeptidyl peptidase-4 (DPP-IV) inhibitor, linagliptin. The experimental Parkinson's disease (PD) was induced by administration of rotenone at a dose of 1.5 mg/kg at alternate day subcutaneously for 21 days. Standard drug (levodopa-200 mg/kg and carbidopa-50 mg/kg) and treatment drug (linagliptin-5 mg/kg, 10 mg/kg, and 20mg/kg) were administered orally daily 1 h before rotenone administration. In a rat rotenone model, linagliptin improved muscle coordination, motor performance, and corrected akinesia. Pretreatment with linagliptin showed significant higher levels of superoxide dismutase, catalase, and glutathione in brain homogenate of animals. Linagliptin significantly elevated the levels of striatal DA and active glucagon-like peptide 1 in brain homogenate of animals. Furthermore, linagliptin amended alterations induced by rotenone in the thiobarbituric acid reactive substances and inflammatory marker such as tumor necrosis factor-α level. The results of the present study indicate the neuroprotective potential of linagliptin for the management of PD might be due to remarkable improvement in motor functions, antioxidant, anti-inflammatory, anti-apoptotic, and neuroprotective mechanisms.
Journal Article
Toxicity of extracellular alpha-synuclein is independent of intracellular alpha-synuclein
2022
Parkinson´s disease (PD) pathology progresses throughout the nervous system. Whereas motor symptoms are always present, there is a high variability in the prevalence of non-motor symptoms. It has been postulated that the progression of the pathology is based on a prion-like disease mechanism partly due to the seeding effect of endocytosed-alpha-synuclein (ASYN) on the endogenous ASYN. Here, we analyzed the role of endogenous ASYN in the progression of PD-like pathology in vivo and in vitro and compared the effect of endocytosed-ASYN as well as paraquat and rotenone on primary enteric, dopaminergic and cortical neurons from wild-type and ASYN-KO mice. Our results show that, in vivo, pathology progression did not occur in the absence of endogenous ASYN. Remarkably, the damage caused by endocytosed-ASYN, rotenone or paraquat was independent from endogenous ASYN and related to the alteration of the host´s mitochondrial membrane potential. Dopaminergic neurons were very sensitive to these noxae compared to other neuronal subtypes. These results suggest that ASYN-mitochondrial interactions play a major role in initiating the pathological process in the host neuron and endogenous ASYN is essential for the transsynaptical transmission of the pathology. Our results also suggest that protecting mitochondrial function is a valid primary therapeutic target.
Journal Article
The Natural Rotenoid Deguelin Ameliorates Diabetic Neuropathy by Decreasing Oxidative Stress and Plasma Glucose Levels in Rats via the Nrf2 Signalling Pathway
by
Yi, Han
,
Hu, Xiaoling
,
Yang, Fengrui
in
Animals
,
Antioxidants
,
Antioxidants - therapeutic use
2018
Abstract
Background/Aims: Deguelin is a natural rotenoid that shows anti-inflammatory and antimicrobial activities. Rotenoids prevent oxidative damage and potentiate natural antioxidant activity in diabetic conditions, suggesting utility in treating diabetes and its complications. Here, we evaluate the potential efficacy of deguelin against diabetic neuropathy (DN). Methods: DN was induced by streptozotocin followed by daily treatment with deguelin (4, 6 or 8 mg/kg) for 14 days. Blood glucose was measured, neurobehavioral tests for nociception and motor coordination were performed, and neuron conduction velocities were analysed electrophysiologically. We also assessed (Na+-K+) ATPase activity, performed a reactive oxygen species assay, measured the levels of various markers of oxidative stress, and of hydrogen sulphide (H2S) in dorsal root ganglion (DRG) neurons, conducted immunoblotting studies for proteins and ELISA for inflammatory cytokines. Results: Deguelin significantly suppressed mechanical and thermal hyperalgesia, as well as cold allodynia, and partially restored the conduction velocities of neurons in DN rats. Significantly decreased expression levels of capspase-3 in DRG neurons, and increased (Na+-K+) ATPase activity in sciatic nerves, were observed. In addition, deguelin decreased glucose levels, attenuated oxidative stress and neuroinflammation, and elevated levels of H2S, nuclear respiratory factor 2 (Nrf2) and heme oxygenase-1, suggesting a disease-attenuating effect of deguelin in DN rats. To shed light on the underlying mechanism of action of deguelin, insulin- and dimethyl fumarate (BG-12)-treated groups were also included. Insulin suppressed glucose levels and BG-12 produced effects on Nrf2 levels similar to 8 mg/kg deguelin, confirming involvement of the Nrf2 pathway in the beneficial effects of deguelin against DN. Conclusions: Deguelin attenuated DN by decreasing oxidative stress and plasma glucose levels via the Nrf2 signalling pathway.
Journal Article
Rotenone restrains colon cancer cell viability, motility and epithelial-mesenchymal transition and tumorigenesis in nude mice via the PI3K/AKT pathway
2020
Rotenone, a natural hydrophobic pesticide, has been reported to display anticancer activity in a variety of cancer cells. However, the mechanism of rotenone on colon cancer (CC) cell migration, invasion and metastasis is still unknown. In the present study, the cytotoxicity of rotenone on CC cells were detected by the Cell Counting Kit-8 assay and confirmed by clone formation assay. The effects of rotenone on CC cell invasion and migration activity were determined in vitro by Transwell invasion and wound healing assays, respectively. In addition, to reveal whether rotenone affected the epithelial-mesenchymal-transition (EMT) process, reverse transcription-quantitative PCR, western blotting and immunofluorescence assays were used to detect the expression of EMT markers. The expression levels of the key markers of the PI3K/AKT pathway after rotenone treatment alone or in combination with a PI3K/AKT signaling activator in CC were also detected by western blotting. Finally, the in vivo anti-tumor effects of rotenone were evaluated in a subcutaneous xenotransplant tumor model treated with an intraperitoneal injection of rotenone. The results of the present study demonstrated that rotenone treatment induced CC cell cytotoxicity and greater effects were observed with increasing concentrations and inhibited cell proliferation compared with untreated cells. In vitro cell function assays revealed that rotenone inhibited CC cell migration, invasion and EMT compared with untreated cells. Mechanically, the phosphorylation levels of AKT and mTOR were downregulated in rotenone-treated CC cells compared with untreated cells. Additionally, AKT and mTOR phosphorylation levels were increased by the PI3K/AKT signaling activator insulin-like growth factor 1 (IGF-1), which was reversed by rotenone treatment. The cell function assays confirmed that the IGF-1-activated cell proliferation, migration and invasion were decreased by rotenone treatment. These results indicated that rotenone affected CC cell proliferation and metastatic capabilities by inhibiting the PI3K/AKT/mTOR signaling pathway. In addition, rotenone inhibited tumor growth and metastatic capability of CC, which was confirmed in a xenograft mouse model. In conclusion, the present study revealed that rotenone inhibited CC cell viability, motility, EMT and metastasis in vitro and in vivo by inhibiting the PI3K/AKT/mTOR signaling pathway.
Journal Article
Rotenone Remarkably Attenuates Oxidative Stress, Inflammation, and Fibrosis in Chronic Obstructive Uropathy
2014
Mitochondrial abnormality has been shown in many kidney disease models. However, its role in the pathogenesis of chronic kidney diseases (CKDs) is still uncertain. In present study, a mitochondrial complex I inhibitor rotenone was applied to the mice subjected to unilateral ureteral obstruction (UUO). Following 7-days rotenone treatment, a remarkable attenuation of tubular injury was detected by PAS staining. In line with the improvement of kidney morphology, rotenone remarkably blunted fibrotic response as shown by downregulation of fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1), collagen I, collagen III, and α-SMA, paralleled with a substantial decrease of TGF-β 1. Meanwhile, the oxidative stress markers thiobarbituric acid-reactive substances (TBARS) and heme oxygenase 1 (HO-1) and inflammatory markers TNF-α, IL-1β, and ICAM-1 were markedly decreased. More importantly, the reduction of mitochondrial DNA copy number and mitochondrial NADH dehydrogenase subunit 1 (mtND1) expression in obstructed kidneys was moderately but significantly restored by rotenone, suggesting an amelioration of mitochondrial injury. Collectively, mitochondrial complex I inhibitor rotenone protected kidneys against obstructive injury possibly via inhibition of mitochondrial oxidative stress, inflammation, and fibrosis, suggesting an important role of mitochondrial dysfunction in the pathogenesis of obstructive kidney disease.
Journal Article
Deguelin Attenuates Reperfusion Injury and Improves Outcome after Orthotopic Lung Transplantation in the Rat
2012
The main goal of adequate organ preservation is to avoid further cellular metabolism during the phase of ischemia. However, modern preservation solutions do rarely achieve this target. In donor organs hypoxia and ischemia induce a broad spectrum of pathologic molecular mechanisms favoring primary graft dysfunction (PGD) after transplantation. Increased hypoxia-induced transcriptional activity leads to increased vascular permeability which in turn is the soil of a reperfusion edema and the enhancement of a pro-inflammatory response in the graft after reperfusion. We hypothesize that inhibition of the respiration chain in mitochondria and thus inhibition of the hypoxia induced mechanisms might reduce reperfusion edema and consecutively improve survival in vivo. In this study we demonstrate that the rotenoid Deguelin reduces the expression of hypoxia induced target genes, and especially VEGF-A, dose-dependently in hypoxic human lung derived cells. Furthermore, Deguelin significantly suppresses the mRNA expression of the HIF target genes VEGF-A, the pro-inflammatory CXCR4 and ICAM-1 in ischemic lungs vs. control lungs. After lung transplantation, the VEGF-A induced reperfusion-edema is significantly lower in Deguelin-treated animals than in controls. Deguelin-treated rats exhibit a significantly increased survival-rate after transplantation. Additionally, a downregulation of the pro-inflammatory molecules ICAM-1 and CXCR4 and an increase in the recruitment of immunomodulatory monocytes (CD163+ and CD68+) to the transplanted organ involving the IL4 pathway was observed. Therefore, we conclude that ischemic periods preceding reperfusion are mainly responsible for the increased vascular permeability via upregulation of VEGF. Together with this, the resulting endothelial dysfunction also enhances inflammation and consequently lung dysfunction. Deguelin significantly decreases a VEGF-A induced reperfusion edema, induces the recruitment of immunomodulatory monocytes and thus improves organ function and survival after lung transplantation by interfering with hypoxia induced signaling.
Journal Article
Anticancer action of cube insecticide: correlation for rotenoid constituents between inhibition of NADH:ubiquinone oxidoreductase and induced ornithine decarboxylase activities
by
Casida, J.E
,
Fang, N. (University of California, Berkeley.)
in
Animals
,
Antineoplastic Agents - pharmacology
,
Antineoplastic Agents - therapeutic use
1998
Rotenone and rotenoid-containing botanicals, important insecticides and fish poisons, are reported to have anticancer activity in rats and mice. The toxic action of rotenone is attributed to inhibition of NADH:ubiquinone oxidoreductase activity and the purported cancer chemopreventive effect of deguelin analogs has been associated with inhibition of phorbol ester-induced ornithine decarboxylase (ODC) activity. This study defines a possible relationship between these two types of activity important in evaluating the toxicology of rotenoid pesticides and the suitability of the anticancer model. Fractionation of cube resin (the commercial rotenoid pesticide) establishes that the activity in both assays is due primarily to rotenone (IC50 = 0.8-4 nM), secondarily to deguelin, and in small part to rotenolone and tephrosin. In addition, the potency of 29 rotenoids from cube insecticide for inhibiting NADH:ubiquinone oxidoreductase in vitro assayed with bovine heart electron transport particles satisfactorily predicts their potency in vivo in the induced ODC assay using noncytotoxic rotenoid concentrations with cultured MCF-7 human breast cancer cells (r = 0.86). Clearly the molecular features of rotenoids essential for inhibiting NADH:ubiquinone oxidoreductase are similar to those for blocking ODC induction. This apparent correlation extends to 11 flavonoids and stilbenoids from cube resin (r = 0.98) and genistein and resveratrol except for lower potency and less selectivity than the rotenoids relative to cytotoxicity. These findings on cube insecticide constituents and our earlier study comparing rotenone and pyridaben miticide indicate that inhibition of NADH:ubiquinone oxidoreductase activity lowers the level of induced ODC activity leading to the antiproliferative effect and anticancer action
Journal Article
N-Acetyl Cysteine May Support Dopamine Neurons in Parkinson's Disease: Preliminary Clinical and Cell Line Data
by
Newberg, Andrew B.
,
Iacovitti, Lorraine
,
Liang, Tsao-Wei
in
Acetylcysteine
,
Acetylcysteine - therapeutic use
,
Aged
2016
The purpose of this study was to assess the biological and clinical effects of n-acetyl-cysteine (NAC) in Parkinson's disease (PD).
The overarching goal of this pilot study was to generate additional data about potentially protective properties of NAC in PD, using an in vitro and in vivo approach. In preparation for the clinical study we performed a cell tissue culture study with human embryonic stem cell (hESC)-derived midbrain dopamine (mDA) neurons that were treated with rotenone as a model for PD. The primary outcome in the cell tissue cultures was the number of cells that survived the insult with the neurotoxin rotenone. In the clinical study, patients continued their standard of care and were randomized to receive either daily NAC or were a waitlist control. Patients were evaluated before and after 3 months of receiving the NAC with DaTscan to measure dopamine transporter (DAT) binding and the Unified Parkinson's Disease Rating Scale (UPDRS) to measure clinical symptoms.
The cell line study showed that NAC exposure resulted in significantly more mDA neurons surviving after exposure to rotenone compared to no NAC, consistent with the protective effects of NAC previously observed. The clinical study showed significantly increased DAT binding in the caudate and putamen (mean increase ranging from 4.4% to 7.8%; p<0.05 for all values) in the PD group treated with NAC, and no measurable changes in the control group. UPDRS scores were also significantly improved in the NAC group (mean improvement of 12.9%, p = 0.01).
The results of this preliminary study demonstrate for the first time a potential direct effect of NAC on the dopamine system in PD patients, and this observation may be associated with positive clinical effects. A large-scale clinical trial to test the therapeutic efficacy of NAC in this population and to better elucidate the mechanism of action is warranted.
ClinicalTrials.gov NCT02445651.
Journal Article
Valeric Acid Protects Dopaminergic Neurons by Suppressing Oxidative Stress, Neuroinflammation and Modulating Autophagy Pathways
by
Azimullah, Sheikh
,
Jalal, Fakhreya Yousuf
,
Adem, Abdu
in
Acids
,
alpha-Synuclein - genetics
,
alpha-Synuclein - metabolism
2020
Parkinson’s disease, the second common neurodegenerative disease is clinically characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) with upregulation of neuroinflammatory markers and oxidative stress. Autophagy lysosome pathway (ALP) plays a major role in degradation of damaged organelles and proteins for energy balance and intracellular homeostasis. However, dysfunction of ALP results in impairment of α-synuclein clearance which hastens dopaminergic neurons loss. In this study, we wanted to understand the neuroprotective efficacy of Val in rotenone induced PD rat model. Animals received intraperitoneal injections (2.5 mg/kg) of rotenone daily followed by Val (40 mg/kg, i.p) for four weeks. Valeric acid, a straight chain alkyl carboxylic acid found naturally in Valeriana officianilis have been used in the treatment of neurological disorders. However, their neuroprotective efficacy has not yet been studied. In our study, we found that Val prevented rotenone induced upregulation of pro-inflammatory cytokine oxidative stress, and α-synuclein expression with subsequent increase in vital antioxidant enzymes. Moreover, Val mitigated rotenone induced hyperactivation of microglia and astrocytes. These protective mechanisms prevented rotenone induced dopaminergic neuron loss in SNpc and neuronal fibers in the striatum. Additionally, Val treatment prevented rotenone blocked mTOR-mediated p70S6K pathway as well as apoptosis. Moreover, Val prevented rotenone mediated autophagic vacuole accumulation and increased lysosomal degradation. Hence, Val could be further developed as a potential therapeutic candidate for treatment of PD.
Journal Article