Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
240 result(s) for "Rubiaceae - chemistry"
Sort by:
Investigation of the Biological Activities and Characterization of Bioactive Constituents of Ophiorrhiza rugosa var. prostrata (D.Don) & Mondal Leaves through In Vivo, In Vitro, and In Silico Approaches
Ophiorrhiza rugosa var. prostrata is one of the most frequently used ethnomedicinal plants by the indigenous communities of Bangladesh. This study was designed to investigate the antidiarrheal, anti-inflammatory, anthelmintic and antibacterial activities of the ethanol extract of O. rugosa leaves (EEOR). The leaves were extracted with ethanol and subjected to in vivo antidiarrheal screening using the castor oil-induced diarrhea, enteropooling, and gastrointestinal transit models. Anti-inflammatory efficacy was evaluated using the histamine-induced paw edema test. In parallel, in vitro anthelmintic and antibacterial activities were evaluated using the aquatic worm and disc diffusion assays respectively. In all three diarrheal models, EEOR (100, 200 and 400 mg/kg) showed obvious inhibition of diarrheal stool frequency, reduction of the volume and weight of the intestinal contents, and significant inhibition of intestinal motility. Also, EEOR manifested dose-dependent anti-inflammatory activity. Anthelmintic action was deemed significant (P < 0.001) with respect to the onset of paralysis and helminth death. EEOR also resulted in strong zones of inhibition when tested against both Gram-positive and Gram-negative bacteria. GC-MS analysis identified 30 compounds within EEOR, and of these, 13 compounds documented as bioactive showed good binding affinities to M3 muscarinic acetylcholine, 5-HT3, tubulin and GlcN-6-P synthase protein targets in molecular docking experiments. Additionally, ADME/T and PASS analyses revealed their drug-likeness, likely safety upon consumption and possible pharmacological activities. In conclusion, our findings scientifically support the ethnomedicinal use and value of this plant, which may provide a potential source for future development of medicines.
Genus Ophiorrhiza: A Review of Its Distribution, Traditional Uses, Phytochemistry, Biological Activities and Propagation
Almost 50 species of Ophiorrhiza plants were reviewed in this work and the main objective is to critically analyse their distribution, phytochemical content, biological activity, and propagation. Moreover, the information would be useful in promoting the relevant uses of the plant, especially in the medicinal fields based on in vitro and in vivo studies. To this end, scientific sources, including theses, PubMed, Google Scholar, International Islamic University Malaysia IIUM EBSCO, PubChem, and Elsevier, were accessed for publications regarding the Ophiorrhiza genus in this review. Scientific literature regarding the Ophiorrhiza plants revealed their wide distribution across Asia and the neighbouring countries, whereby they were utilised as traditional medicine to treat various diseases. In particular, various active compounds, such as alkaloids, flavonoids, and terpenoids, were reported in the plant. Furthermore, the Ophiorrhiza species showed highly diverse biological activities, such as anti-cancer, antiviral, antimicrobial, and more. The genus propagation reported could produce a high quality and quantity of potent anticancer compound, namely camptothecin (CPT). Hence, it is believed that the relevant uses of natural compounds present in the plants can replace the existing crop of synthetic anticancer drugs associated with a multitude of unbearable side effects. Additionally, more future studies on the Ophiorrhiza species should be undertaken to establish the links between its traditional uses, active compounds, and pharmacological activities reported.
A Review on the Phytochemistry, Pharmacology, Pharmacokinetics and Toxicology of Geniposide, a Natural Product
Iridoid glycosides are natural products occurring widely in many herbal plants. Geniposide (C17H24O10) is a well-known one, present in nearly 40 species belonging to various families, especially the Rubiaceae. Along with this herbal component, dozens of its natural derivatives have also been isolated and characterized by researchers. Furthermore, a large body of pharmacological evidence has proved the various biological activities of geniposide, such as anti-inflammatory, anti-oxidative, anti-diabetic, neuroprotective, hepatoprotective, cholagogic effects and so on. However, there have been some research articles on its toxicity in recent years. Therefore, this review paper aims to provide the researchers with a comprehensive profile of geniposide on its phytochemistry, pharmacology, pharmacokinetics and toxicology in order to highlight some present issues and future perspectives as well as to help us develop and utilize this iridoid glycoside more efficiently and safely.
A Review of Phytochemical and Pharmacological Studies on Galium verum L., Rubiaceae
Galium verum (Yellow Bedstraw) is a rhizomatous perennial herb belonging to the Rubiaceae family. It is native to Eurasia and Africa but has also been introduced to southern Canada and the northern U.S. Widely used in traditional medicine, G. verum has been recognized for its diuretic, anti-inflammatory, antimicrobial, analgesic, and anticancer properties. Phytochemical studies have shown that the plant is rich in significant bioactive compounds, such as flavonoids, phenolic acids, iridoids, anthraquinones, phytosterols, coumarins, and tannins. Research suggests that G. verum exhibits strong antioxidant activity, protecting cells from oxidative stress and inflammation. Its antimicrobial potential has been demonstrated against various bacterial and fungal pathogens, supporting its traditional use in wound healing and infection treatment. Moreover, modern studies indicate its cytotoxic effects on cancer cells, suggesting potential applications in oncology. Additionally, its hepatoprotective and neuroprotective properties highlight its promise for treating metabolic and neurodegenerative disorders. Despite its well-known therapeutic potential, further studies are required to fully clarify its mechanisms of action and ensure its safety for medicinal use. Given the variety of bioactive compounds found in G. verum and their pharmacological benefits, this review emphasizes the importance of this species as a valuable medicinal plant, encouraging further scientific research for its application in pharmacology.
Phytochemical constitution and pharmacological effects of Genipa americana L. (Rubiaceae): a review
Abstract Genipa americana L., popularly known as “jenipapo”, is a species easily found, especially in northeastern Brazil. It is remarkable for having iridoids in its composition. Popular for its blue pigment which has been used to manufacture paints and dyes. Furthermore, this plant is utilized for medicinal purposes in addressing a variety of illnesses. This review provide a comprehensive picture of the phytochemical and biological activities characteristics of Genipa americana L. deal with its ethnomedicinal use and botany based on literature reports. These researches pointed out a range of secondary metabolites with iridoids being the most prevalent and abundant. Until now, the biological tests have shown important pharmacological activities, especially the antioxidant, insecticide and antibacterial activities. Besides presenting itself in a very promising way in other areas such as food and cosmetics industry, it is also used in popular medicine to treat several diseases having this potential use disseminated in its various parts. Finally, for a better analysis and validation of its health benefits and properties, extensive research is needed, including clinical trials. The information gathered and approached in this paper might support the planning and discussion of future studies on the topic. Resumo Genipa americana L., popularmente conhecida como “jenipapo”, é uma espécie facilmente encontrada, principalmente no Nordeste do Brasil. É notável por possuir iridóides em sua composição. Popular por seu pigmento azul que tem sido usado na fabricação de tintas e corantes. Além disso, esta planta é utilizada para fins medicinais no tratamento de uma variedade de doenças. Essa revisão fornece um panorama abrangente das características fitoquímicas e atividades biológicas da Genipa americana L., abordando seu uso etnomedicinal e botânico a partir dos relatos da literatura. Essas pesquisas apontaram uma série de metabólitos secundários, sendo os iridóides os mais prevalentes e abundantes. Até agora, os testes biológicos demonstraram importantes atividades farmacológicas, especialmente as atividades antioxidante, inseticida e antibacteriana. Além de se apresentar de forma bastante promissora em outras áreas como a indústria alimentícia e cosmética, também é utilizado na medicina popular para tratar diversas doenças tendo esse potencial uso disseminado em seus diversos setores. Finalmente, para uma melhor análise e validação dos seus benefícios e propriedades para a saúde, é necessária uma extensa investigação, incluindo ensaios clínicos. As informações levantadas e abordadas neste artigo poderão subsidiar o planejamento e discussão de estudos futuros sobre o tema.
Yellow Twig (Nauclea orientalis) from Thailand: Strictosamide as the Key Alkaloid of This Plant Species
Comprehensive phytochemical examination from different perspectives using preparative and analytical chromatographic techniques combined with spectroscopic/spectrometric methods of the so-called “yellow twig” Nauclea orientalis (L.) L. (Rubiaceae) led to the identification of 13 tryptamine-derived (=monoterpene-indole) alkaloids. The identified alkaloids comprise strictosamide and four of its glucosidic derivatives, three oxindole derivatives, and five yellow-colored angustine-type aglycones. Qualitative and quantitative HPLC analyses showed the enrichment of strictosamide in all studied organs. Based on these results, we performed metabolomic analyses of monoterpene-indole alkaloids and made a 1H NMR in vitro monitoring of enzymatic deglucosylation of strictosamide. A comparison of the stability of strictosamide and its enantiomer vincoside lactam by theoretical calculations was also performed revealing a slightly higher stability of vincoside lactam. Additionally, we conducted two different anti-feedant assays of strictosamide using larvae of the polyphageous moth Spodoptera littoralis Boisduval. The obtained results indicate that generally two different biosynthetic pathways are most likely responsible for the overall alkaloid composition in this plant. Strictosamide is the key compound in the broader pathway and most likely the source of the identified angustine-type aglycones, which may contribute significantly to the yellow color of the wood. Its cross-organ accumulation makes it likely that strictosamide is not only important as a reservoir for the further biosynthesis, but also acts in the plants’ defense strategy.
Phytochemistry Meets Geochemistry—Blumenol C Sulfate: A New Megastigmane Sulfate from Palicourea luxurians (Rubiaceae: Palicoureeae)
There is a previously neglected influence of geochemical conditions on plant phytochemistry. In particular, high concentrations of dissolved salts can affect their biosynthesis of natural products. Detoxification is most likely an important aspect for the plant, but additional natural products can also give it an expanded range of bioactivities. During the phytochemical analysis a Palicourea luxurians plant collected in a sulfate-rich environment (near the Río Sucio, Costa Rica) showed an interesting natural product in this regard. The structure of this compound was determined using spectroscopic and computational methods (NMR, MS, UV, IR, CD, optical rotation, quantum chemical calculations) and resulted in a megastigmane sulfate ester possessing a β-ionone core structure, namely blumenol C sulfate (1, C13H22O5S). The levels of sulfur and sulfate ions in the leaves of the plant were determined using elemental analysis and compared to the corresponding levels in comparable plant leaves from a less sulfate-rich environments. The analyses show the leaves from which we isolated blumenol C sulfate (1) to contain 35% more sulfur and 80% more sulfate than the other samples. Antimicrobial and antioxidant activities of compound 1 were tested against Escherichia coli, E. coli ampR and Bacillus subtilis as well as measured using complementary in vitro FRAP and ATBS assays, respectively. These bioactivities are comparable to those determined for structurally related megastigmanes. The sulfur and sulfate content of the plant leaves from the sulfate-rich environment was significantly higher than that of the other plants. Against this background of salt stress, we discuss a possible biosynthesis of blumenol C sulfate (1). Furthermore, there appears to be no benefit for the plant in terms of extended bioactivities. Hence, the formation of blumenol C sulfate (1) probably primarily serves the plant detoxification process.
Identification of the Volatile Components of Galium verum L. and Cruciata leavipes Opiz from the Western Italian Alps
The chemical composition of the volatile fraction from Galium verum L. (leaves and flowers) and Cruciata laevipes Opiz (whole plant), Rubiaceae, was investigated. Samples from these two plant species were collected at full bloom in Val di Susa (Western Alps, Turin, Italy), distilled in a Clevenger-type apparatus, and analyzed by GC/FID and GC/MS. A total of more than 70 compounds were identified, making up 92%–98% of the total oil. Chemical investigation of their essential oils indicated a quite different composition between G. verum and C. laevipes, both in terms of the major constituents and the dominant chemical classes of the specialized metabolites. The most abundant compounds identified in the essential oils from G. verum were 2-methylbenzaldheyde (26.27%, corresponding to 11.59 μg/g of fresh plant material) in the leaves and germacrene D (27.70%; 61.63 μg/g) in the flowers. C. laevipes essential oils were instead characterized by two sesquiterpenes, namely β-caryophyllene (19.90%; 15.68 μg/g) and trans-muurola-4(15),5-diene (7.60%; 5.99 μg/g); two phenylpropanoids, benzyl alcohol (8.30%; 6.71 μg/g), and phenylacetaldehyde (7.74%; 6.26 μg/g); and the green-leaf alcohol cis-3-hexen-1-ol (9.69%; 7.84 μg/g). The ecological significance of the presence of such compounds is discussed.
Lasianosides F–I: A New Iridoid and Three New Bis-Iridoid Glycosides from the Leaves of Lasianthus verticillatus (Lour.) Merr
A series of iridoid glycosides were isolated from the leaves of Lasianthus verticillatus (Lour.) Merr., belonging to family Rubiaceae. A new iridoid glycoside, lasianoside F (1), and three new bis-iridoid glycosides, lasianosides G–I (2–4), together with four known compounds (5–8) were isolated. The structures were established by spectroscopic methods, including 1D and 2D NMR experiments (1H, 13C, DEPT, COSY, HSQC, HMBC, and NOESY) in combination with HR-ESI-MS and CD spectra.
Isolation and Identification of the Five Novel Flavonoids from Genipa americana Leaves
Genipa americana is a medicinal plant popularly known as “jenipapo”, which occurs in Brazil and belongs to the Rubiaceae family. It is a species widely distributed in the tropical Central and South America, especially in the Cerrado biome. Their leaves and fruits are used as food and popularly in folk medicine to treat anemias, as an antidiarrheal, and anti-syphilitic. Iridoids are the main secondary metabolites described from G. americana, but few studies have been conducted with their leaves. In this study, the aim was to chemical approach for identify the main compounds present at the extract of G. americana leaves. The powdered leaves were extracted by maceration with EtOH: water (70:30, v/v), following liquid-liquid partition with petroleum ether, chloroform, ethyl acetate and n-butanol. A total of 13 compounds were identified. In addition three flavonoids were isolated from the ethyl acetate fraction: quercetin-3-O-robinoside (GAF 1), kaempferol-3-O-robinoside (GAF 2) and isorhamnetin-3-O-robinoside (GAF 3) and, from n-butanol fraction more two flavonoids were isolated, kaempferol-3-O-robinoside-7-O-rhamnoside (robinin) (GAF 4) and isorhamnetin-3-O-robinoside-7-rhamnoside (GAF 5). Chemical structures of these five flavonoids were elucidated using spectroscopic methods (MS, 1H and 13C-NMR 1D and 2D). These flavonoids glycosides were described for the first time in G. americana.