Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
142 result(s) for "S-Adenosylhomocysteine - chemistry"
Sort by:
Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2
The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined the x-ray crystal structure of a functional PRC2 complex from a thermophilic yeast species (see the Perspective by Schapira). The intimate association of the three subunits confers stability to PRC2. The structure also reveals how the reaction product, H3K27me, stimulates PRC2 allosterically and how a cancer-associated histone mutation blocks the PRC2 active site. Science , this issue p. 10.1126/science.aac4383 ; see also p. 278 The structure of a gene silencing complex reveals how it self-activates and is inhibited by a cancer-associated chromatin mutation. [Also see Perspective by Schapira ] Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl- l -homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site.
2′-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography
The genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus has a capping modification at the 5′-untranslated region (UTR) to prevent its degradation by host nucleases. These modifications are performed by the Nsp10/14 and Nsp10/16 heterodimers using S-adenosylmethionine as the methyl donor. Nsp10/16 heterodimer is responsible for the methylation at the ribose 2′-O position of the first nucleotide. To investigate the conformational changes of the complex during 2′-O methyltransferase activity, we used a fixed-target serial synchrotron crystallography method at room temperature. We determined crystal structures of Nsp10/16 with substrates and products that revealed the states before and after methylation, occurring within the crystals during the experiments. Here we report the crystal structure of Nsp10/16 in complex with Cap-1 analog (m7GpppAm2′-O). Inhibition of Nsp16 activity may reduce viral proliferation, making this protein an attractive drug target.
Phospho-Switch: Regulation of the Activity of SAM-Dependent Methyltransferases Using H-Phosphinic SAM Analogue
S-Adenosyl-L-methionine (SAM) is a central cofactor in cellular methylation, donating methyl groups to a wide range of biological substrates. SAM analogues are promising tools for selective modulation of methyltransferase activity. Here, we investigated phosphorus-containing analogues of SAM and S-adenosyl-L-homocysteine (SAH), focusing on the H-phosphinic SAM analogue ((R,S)-SAM-PH) with the HO(H)(O)P group replacing the carboxyl group of SAM. We examined the interaction of (R,S)-SAM-PH with three representative methyltransferases: Dnmt1, responsible for maintenance of DNA methylation; Dnmt3a, which establishes de novo DNA methylation; and catechol-O-methyltransferase (COMT), which methylates protocatechuic aldehyde to yield vanillin and isovanillin. (R,S)-SAM-PH is a methyl group donor for Dnmt3a and COMT, but not for Dnmt1, despite the high structural similarity of the Dnmt1 and Dnmt3a catalytic domains. These results demonstrate that targeted modification of the carboxyl group of SAM can yield analogues with specific activity towards various methyltransferases. The different recognition of (R,S)-SAM-PH by Dnmt3a and Dnmt1 highlights its potential as a molecular probe for distinguishing de novo from maintenance DNA methylation. This work enriches our understanding of methyltransferase substrate specificity and provides a new tool for selective modulation of epigenetic processes.
The Molecular and Structural Basis of O-methylation Reaction in Coumarin Biosynthesis in Peucedanum praeruptorum Dunn
Methoxylated coumarins represent a large proportion of officinal value coumarins while only one enzyme specific to bergaptol O-methylation (BMT) has been identified to date. The multiple types of methoxylated coumarins indicate that at least one unknown enzyme participates in the O-methylation of other hydroxylated coumarins and remains to be identified. Combined transcriptome and metabonomics analysis revealed that an enzyme similar to caffeic acid O-methyltransferase (COMT-S, S is short for similar) was involved in catalyzing all the hydroxylated coumarins in Peucedanum praeruptorum. However, the precise molecular mechanism of its substrate heterozygosis remains unsolved. Pursuing this question, we determined the crystal structure of COMT-S to clarify its substrate preference. The result revealed that Asn132, Asp271, and Asn325 govern the substrate heterozygosis of COMT-S. A single mutation, such as N132A, determines the catalytic selectivity of hydroxyl groups in esculetin and also causes production differences in bergapten. Evolution-based analysis indicated that BMT was only recently derived as a paralogue of caffeic acid O-methyltransferase (COMT) via gene duplication, occurring before the Apiaceae family divergence between 37 and 100 mya. The present study identified the previously unknown O-methylation steps in coumarin biosynthesis. The crystallographic and mutational studies provided a deeper understanding of the substrate preference, which can be used for producing specific O-methylation coumarins. Moreover, the evolutionary relationship between BMT and COMT-S was clarified to facilitate understanding of evolutionary events in the Apiaceae family.
A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase
Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-L-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs.
The Adenosinergic System as a Therapeutic Target in the Vasculature: New Ligands and Challenges
Adenosine is an adenine base purine with actions as a modulator of neurotransmission, smooth muscle contraction, and immune response in several systems of the human body, including the cardiovascular system. In the vasculature, four P1-receptors or adenosine receptors—A1, A2A, A2B and A3—have been identified. Adenosine receptors are membrane G-protein receptors that trigger their actions through several signaling pathways and present differential affinity requirements. Adenosine is an endogenous ligand whose extracellular levels can reach concentrations high enough to activate the adenosine receptors. This nucleoside is a product of enzymatic breakdown of extra and intracellular adenine nucleotides and also of S-adenosylhomocysteine. Adenosine availability is also dependent on the activity of nucleoside transporters (NTs). The interplay between NTs and adenosine receptors’ activities are debated and a particular attention is given to the paramount importance of the disruption of this interplay in vascular pathophysiology, namely in hypertension., The integration of important functional aspects of individual adenosine receptor pharmacology (such as in vasoconstriction/vasodilation) and morphological features (within the three vascular layers) in vessels will be discussed, hopefully clarifying the importance of adenosine receptors/NTs for modulating peripheral mesenteric vascular resistance. In recent years, an increase interest in purine physiology/pharmacology has led to the development of new ligands for adenosine receptors. Some of them have been patented as having promising therapeutic activities and some have been chosen to undergo on clinical trials. Increased levels of endogenous adenosine near a specific subtype can lead to its activation, constituting an indirect receptor targeting approach either by inhibition of NT or, alternatively, by increasing the activity of enzymes responsible for ATP breakdown. These findings highlight the putative role of adenosinergic players as attractive therapeutic targets for cardiovascular pathologies, namely hypertension, heart failure or stroke. Nevertheless, several aspects are still to be explored, creating new challenges to be addressed in future studies, particularly the development of strategies able to circumvent the predicted side effects of these therapies.
Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294
The G9a-like lysine methyltransferases can be inhibited by the small molecule BIX-01294, recently identified through a chemical screen and shown to be capable of replacing Oct3/4. The structure of GLP in complex with BIX-01294 indicates an overlap with the known position of histone peptide binding, and further work indicates that the drug inhibits methylation of DNMT1, indicating that it is enzyme specific but non specific with regard to substrate. Histone lysine methylation is an important epigenetic mark that regulates gene expression and chromatin organization. G9a and G9a-like protein (GLP) are euchromatin-associated methyltransferases that repress transcription by methylating histone H3 Lys9. BIX-01294 was originally identified as a G9a inhibitor during a chemical library screen of small molecules and has previously been used in the generation of induced pluripotent stem cells. Here we present the crystal structure of the catalytic SET domain of GLP in complex with BIX-01294 and S -adenosyl- L -homocysteine. The inhibitor is bound in the substrate peptide groove at the location where the histone H3 residues N-terminal to the target lysine lie in the previously solved structure of the complex with histone peptide. The inhibitor resembles the bound conformation of histone H3 Lys4 to Arg8, and is positioned in place by residues specific for G9a and GLP through specific interactions.
Structural insights into SETD3-mediated histidine methylation on β-actin
SETD3 is a member of the SET (Su(var)3–9, Enhancer of zeste, and Trithorax) domain protein superfamily and plays important roles in hypoxic pulmonary hypertension, muscle differentiation, and carcinogenesis. Previously, we identified SETD3 as the actin-specific methyltransferase that methylates the N3 of His73 on β-actin (Kwiatkowski et al., 2018). Here, we present two structures of S-adenosyl-L-homocysteine-bound SETD3 in complex with either an unmodified β-actin peptide or its His-methylated variant. Structural analyses, supported by biochemical experiments and enzyme activity assays, indicate that the recognition and methylation of β-actin by SETD3 are highly sequence specific, and that both SETD3 and β-actin adopt pronounced conformational changes upon binding to each other. In conclusion, this study is the first to show a catalytic mechanism of SETD3-mediated histidine methylation on β-actin, which not only throws light on the protein histidine methylation phenomenon but also facilitates the design of small molecule inhibitors of SETD3.
Investigating metabolic dysregulation in serum of triple transgenic Alzheimer’s disease male mice: implications for pathogenesis and potential biomarkers
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease that lacks convenient and accessible peripheral blood diagnostic markers and effective drugs. Metabolic dysfunction is one of AD risk factors, which leaded to alterations of various metabolites in the body. Pathological changes of the brain can be reflected in blood metabolites that are expected to explain the disease mechanisms or be candidate biomarkers. The aim of this study was to investigate the changes of targeted metabolites within peripheral blood of AD mouse model, with the purpose of exploring the disease mechanism and potential biomarkers. Targeted metabolomics was used to quantify 256 metabolites in serum of triple transgenic AD (3 × Tg-AD) male mice. Compared with controls, 49 differential metabolites represented dysregulation in purine, pyrimidine, tryptophan, cysteine and methionine and glycerophospholipid metabolism. Among them, adenosine, serotonin, N-acetyl-5-hydroxytryptamine, and acetylcholine play a key role in regulating neural transmitter network. The alteration of S-adenosine-l-homocysteine, S-adenosine-l-methionine, and trimethylamine-N-oxide in AD mice serum can served as indicator of AD risk. The results revealed the changes of metabolites in serum, suggesting that metabolic dysregulation in periphery in AD mice may be related to the disturbances in neuroinhibition, the serotonergic system, sleep function, the cholinergic system, and the gut microbiota. This study provides novel insights into the dysregulation of several key metabolites and metabolic pathways in AD, presenting potential avenues for future research and the development of peripheral biomarkers.
Structural insights into mechanisms of the small RNA methyltransferase HEN1
Small RNAs are HEN-picked Some of the small RNAs involved in RNA silencing require addition on their 3′ terminal nucleotide of a 2′-O-methyl group in order for the precursor RNA to be processed correctly. This modification is performed by the HEN1 RNA methyltransferase, using AdoMet as a methyl donor. In this study, Ma and colleagues have solved the structure of a plant HEN1 in complex with an RNA duplex and the cofactor product, AdoHcy. The structure reveals how the enzyme recognizes the correct substrate and suggests a new mechanism for methylation. Some of the small RNAs involved in RNA silencing require the addition of a 2′- O -methyl group on the 3′ terminal nucleotide in order for the precursor RNA to be correctly processed. This modification is performed by the HEN1 RNA methyltransferase, the crystal structure of which — from Arabidopsis — is now solved. RNA silencing is a conserved regulatory mechanism in fungi, plants and animals that regulates gene expression and defence against viruses and transgenes 1 . Small silencing RNAs of ∼20–30 nucleotides and their associated effector proteins, the Argonaute family proteins, are the central components in RNA silencing 2 . A subset of small RNAs, such as microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs in animals and siRNAs in Drosophila , requires an additional crucial step for their maturation; that is, 2′- O -methylation on the 3′ terminal nucleotide 3 , 4 , 5 , 6 . A conserved S -adenosyl- l -methionine-dependent RNA methyltransferase, HUA ENHANCER 1 (HEN1), and its homologues are responsible for this specific modification 3 , 4 , 5 , 7 , 8 . Here we report the 3.1 Å crystal structure of full-length HEN1 from Arabidopsis in complex with a 22-nucleotide small RNA duplex and cofactor product S -adenosyl- l -homocysteine. Highly cooperative recognition of the small RNA substrate by multiple RNA binding domains and the methyltransferase domain in HEN1 measures the length of the RNA duplex and determines the substrate specificity. Metal ion coordination by both 2′ and 3′ hydroxyls on the 3′-terminal nucleotide and four invariant residues in the active site of the methyltransferase domain suggests a novel Mg 2+ -dependent 2′- O -methylation mechanism.