Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,864
result(s) for
"S-Adenosylmethionine"
Sort by:
Pharmacokinetic properties of a novel formulation of S-adenosyl-l-methionine phytate
S-adenosyl-l-methionine (SAM), the main endogenous methyl donor, is the adenosyl derivative of the amino acid methionine, which displays many important roles in cellular metabolism. It is widely used as a food supplement and in some countries is also marketed as a drug. Its interesting nutraceutical and pharmacological properties prompted us to evaluate the pharmacokinetics of a new form of SAM, the phytate salt. The product was administered orally to rats and pharmacokinetic parameters were evaluated by comparing the results with that obtained by administering the SAM tosylated form (SAM PTS). It was found that phytate anion protects SAM from degradation, probably because of steric hindrance exerted by the counterion, and that the SAM phytate displayed significant better pharmacokinetic parameters compared to SAM PTS. These results open to the perspective of the use of new salts of SAM endowed with better pharmacokinetic properties.
Journal Article
SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway
by
Gygi, Steven P.
,
Sabatini, David M.
,
Orozco, Jose M.
in
Activation
,
Adenosylmethionine
,
Amino acids
2017
mTOR complex 1 (mTORC1) regulates cell growth and metabolism in response to multiple environmental cues. Nutrients signal via the Rag guanosine triphosphatases (GTPases) to promote the localization of mTORC1 to the lysosomal surface, its site of activation. We identified SAMTOR, a previously uncharacterized protein, which inhibits mTORC1 signaling by interacting with GATOR1, the GTPase activating protein (GAP) for RagA/B. We found that the methyl donor S-adenosylmethionine (SAM) disrupts the SAMTOR-GATOR1 complex by binding directly to SAMTOR with a dissociation constant of approximately 7 μM. In cells, methionine starvation reduces SAM levels below this dissociation constant and promotes the association of SAMTOR with GATOR1, thereby inhibiting mTORC1 signaling in a SAMTOR-dependent fashion. Methionine-induced activation of mTORC1 requires the SAM binding capacity of SAMTOR. Thus, SAMTOR is a SAM sensor that links methionine and one-carbon metabolism to mTORC1 signaling.
Journal Article
mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer
by
Serra, Violeta
,
Carracedo, Arkaitz
,
Castro, Elena
in
1-Phosphatidylinositol 3-kinase
,
13/106
,
13/51
2017
mTOR complex 1 signalling regulates polyamine metabolism and thereby promotes tumorigenesis, through regulation of the stability of a key enzyme, AMD1.
Cell proliferation in prostate cancer
The mTOR pathway regulates multiple metabolic pathways in cancers but knowledge of how oncogenic signals regulate polyamine production, which is important in spreading cancer cells, is limited. Arkaitz Carracedo and colleagues add to the existing knowledge. Using a mixture of metabolic analysis techniques, they show that mTOR signalling regulates polyamine metabolism and thereby promotes tumorigenesis through regulation of the stability of a key enzyme, AMD1. They validated this pathway in mouse and human cancer specimens and found that ADM1 is upregulated in prostate cancer specimens with activated mTORC1. This adds to the complexity of cancer cell metabolism and offers new therapeutic avenues.
Activation of the PTEN–PI3K–mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation
1
,
2
. Here we show that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. By using integrative metabolomics in a mouse model
3
and human biopsies
4
of prostate cancer, we identify alterations in tumours affecting the production of decarboxylated
S
-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of
S
-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation is validated in mouse and human cancer specimens. AMD1 is upregulated in human prostate cancer with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus
5
exhibit a predominant decrease in AMD1 immunoreactivity that is associated with a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program.
Journal Article
2′-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography
by
Foster, Ian T.
,
Chard, Ryan
,
Minasov, George
in
5' Untranslated Regions
,
Adenosylmethionine
,
BASIC BIOLOGICAL SCIENCES
2021
The genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus has a capping modification at the 5′-untranslated region (UTR) to prevent its degradation by host nucleases. These modifications are performed by the Nsp10/14 and Nsp10/16 heterodimers using S-adenosylmethionine as the methyl donor. Nsp10/16 heterodimer is responsible for the methylation at the ribose 2′-O position of the first nucleotide. To investigate the conformational changes of the complex during 2′-O methyltransferase activity, we used a fixed-target serial synchrotron crystallography method at room temperature. We determined crystal structures of Nsp10/16 with substrates and products that revealed the states before and after methylation, occurring within the crystals during the experiments. Here we report the crystal structure of Nsp10/16 in complex with Cap-1 analog (m7GpppAm2′-O). Inhibition of Nsp16 activity may reduce viral proliferation, making this protein an attractive drug target.
Journal Article
Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species
by
Mohr, Stephanie E.
,
Parkhitko, Andrey A.
,
Jouandin, Patrick
in
Adenosylmethionine
,
Aging
,
Aging - metabolism
2019
Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S‐adenosylmethionine, which, after transferring its methyl group, is converted to S‐adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.
A potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S‐adenosylmethionine (SAM), which, after transferring its methyl group, is converted to S‐adenosylhomocysteine (SAH). Methionine metabolism determines the ratio of SAM/SAH metabolites and affects most of the methylation reactions in the cell, which in turn regulate a wide range of processes including ones that were attributed to be responsible for the lifespan extension by MetR.
Journal Article
S‐adenosylmethionine in combination with decitabine shows enhanced anti‐cancer effects in repressing breast cancer growth and metastasis
by
Mahmood, Niaz
,
Szyf, Moshe
,
Arakelian, Ani
in
5-aza-2'-deoxycytidine
,
Adenosylmethionine
,
Angiogenesis
2020
Abnormal DNA methylation orchestrates many of the cancer‐related gene expression irregularities such as the inactivation of tumour suppressor genes through hypermethylation as well as activation of prometastatic genes through hypomethylation. The fact that DNA methylation abnormalities can be chemically reversed positions the DNA methylation machinery as an attractive target for anti‐cancer drug development. However, although in vitro studies suggested that targeting concordantly hypo‐ and hypermethylation is of benefit in suppressing both oncogenic and prometastatic functions of breast cancer cells, this has never been tested in a therapeutic setting in vivo. In this context, we investigated the combined therapeutic effects of an approved nutraceutical agent S‐adenosylmethionine (SAM) and FDA‐approved hypomethylating agent decitabine using the MDA‐MB‐231 xenograft model of breast cancer and found a pronounced reduction in mammary tumour volume and lung metastasis compared to the animals in the control and monotherapy treatment arms. Immunohistochemical assessment of the primary breast tumours showed a significantly reduced expression of proliferation (Ki‐67) and angiogenesis (CD31) markers following combination therapy as compared to the control group. Global transcriptome and methylome analyses have revealed that the combination therapy regulates genes from several key cancer‐related pathways that are abnormally expressed in breast tumours. To our knowledge, this is the first preclinical study demonstrating the anti‐cancer therapeutic potential of using a combination of methylating (SAM) and demethylating agent (decitabine) in vivo. Results from this study provide a molecularly founded rationale for clinically testing a combination of agents targeting the epigenome to reduce the morbidity and mortality from breast cancer.
Journal Article
Molecular hijacking of siroheme for the synthesis of heme and d 1 heme
2011
Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B
12
, coenzyme F
430
, and heme
d
1
underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and
d
1
heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For
d
1
heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined.
Journal Article
Structural Analysis of Spermidine Synthase from IKluyveromyces lactis/I
2023
Spermidine is a polyamine molecule that performs various cellular functions, such as DNA and RNA stabilization, autophagy modulation, and eIF5A formation, and is generated from putrescine by aminopropyltransferase spermidine synthase (SpdS). During synthesis, the aminopropyl moiety is donated from decarboxylated S-adenosylmethionine to form putrescine, with 5′-deoxy-5′-methylthioadenosine being produced as a byproduct. Although the molecular mechanism of SpdS function has been well-established, its structure-based evolutionary relationships remain to be fully understood. Moreover, only a few structural studies have been conducted on SpdS from fungal species. Here, we determined the crystal structure of an apo-form of SpdS from Kluyveromyces lactis (KlSpdS) at 1.9 Å resolution. Structural comparison with its homologs revealed a conformational change in the α6 helix linked to the gate-keeping loop, with approximately 40° outward rotation. This change caused the catalytic residue Asp170 to move outward, possibly due to the absence of a ligand in the active site. These findings improve our understanding of the structural diversity of SpdS and provide a missing link that expands our knowledge of the structural features of SpdS in fungal species.
Journal Article
Fused radical SAM and αKG-HExxH domain proteins contain a distinct structural fold and catalyse cyclophane formation and β-hydroxylation
by
Morinaka, Brandon I.
,
Li, He
,
Ji, Xinjian
in
639/638/45/321/1155
,
639/638/45/607/1168
,
639/638/60
2024
Two of nature’s recurring binding motifs in metalloproteins are the CxxxCxxC motif in radical SAM enzymes and the 2-His-1-carboxylate motif found both in zincins and α-ketoglutarate and non-haem iron enzymes. Here we show the confluence of these two domains in a single post-translational modifying enzyme containing an N-terminal radical
S
-adenosylmethionine domain fused to a C-terminal 2-His-1-carboxylate (HExxH) domain. The radical SAM domain catalyses three-residue cyclophane formation and is the signature modification of triceptides, a class of ribosomally synthesized and post-translationally modified peptides. The HExxH domain is a defining feature of zinc metalloproteases. Yet the HExxH motif-containing domain studied here catalyses β-hydroxylation and is an α-ketoglutarate non-haem iron enzyme. We determined the crystal structure for this HExxH protein at 2.8 Å, unveiling a distinct structural fold, thus expanding the family of α-ketoglutarate non-haem iron enzymes with a class that we propose to name αKG-HExxH. αKG-HExxH proteins represent a unique family of ribosomally synthesized and post-translationally modified peptide modifying enzymes that can furnish opportunities for genome mining, synthetic biology and enzymology.
Radical SAM (rSAM) and 2-His-1-carboxylate enzymes are known to co-occur in RiPP biosynthetic pathways. Here we show the fusion of these enzymes in a single protein where the rSAM enzyme catalyzes cyclophane formation. The 2-His-1-carboxylate enzymes—termed αKG-HExxH—are α-ketoglutarate non-haem iron enzymes that harbour a distinct fold and catalyse β-hydroxylation.
Journal Article
Recent progress in one-pot enzymatic synthesis and regeneration of high-value cofactors
by
Ting, Wan-Wen
,
Ng, I-Son
,
Juo, Jiun-Jang
in
Biosynthesis
,
biotechnology
,
cell-free protein synthesis
2025
One-pot enzymatic synthesis is flourishing in synthetic chemistry, heralding a sustainable and green era. Recent advancements enable the creation of complex enzymatic prosthetic groups and regeneration of enzymatic cofactors such as S-adenosylmethionine. The next frontier is to develop the effective and innovative cofactors for essential micronutrients, metabolic modulators, and biomedicines.
One-pot enzymatic synthesis is flourishing in synthetic chemistry, heralding a sustainable and green era. Recent advancements enable the creation of complex enzymatic prosthetic groups and regeneration of enzymatic cofactors such as S-adenosylmethionine. The next frontier is to develop the effective and innovative cofactors for essential micronutrients, metabolic modulators, and biomedicines.
Journal Article