Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
358 result(s) for "S-Phase Kinase-Associated Proteins - metabolism"
Sort by:
Proteogenomics connects somatic mutations to signalling in breast cancer
Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. Here we describe quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers, of which 77 provided high-quality data. Integrated analyses provided insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. Interrogation of the 5q trans -effects against the Library of Integrated Network-based Cellular Signatures, connected loss of CETN3 and SKP1 to elevated expression of epidermal growth factor receptor (EGFR), and SKP1 loss also to increased SRC tyrosine kinase. Global proteomic data confirmed a stromal-enriched group of proteins in addition to basal and luminal clusters, and pathway analysis of the phosphoproteome identified a G-protein-coupled receptor cluster that was not readily identified at the mRNA level. In addition to ERBB2, other amplicon-associated highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates the functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets. Quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of genomically annotated human breast cancer samples elucidates functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies potential therapeutic targets. Proteogenomics of breast cancer This large-scale collaborative study describes quantitative-mass spectrometry-based proteomic and phosphoproteomic analyses of 105 breast cancer samples from The Cancer Genome Atlas (TCGA), representing the four principal mRNA-defined breast cancer intrinsic subtypes. The result is a high-quality proteomic resource for human breast cancer investigation, achieved using technologies and analytical approaches that illuminate the connections between genome and proteome. The data narrow candidate nominations for driver genes within large deletions and amplified regions, and identify potential therapeutic targets.
Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle
Whether glucose is predominantly metabolized via oxidative phosphorylation or glycolysis differs between quiescent versus proliferating cells, including tumor cells. However, how glucose metabolism is coordinated with cell cycle in mammalian cells remains elusive. Here, we report that mammalian cells predominantly utilize the tricarboxylic acid (TCA) cycle in G1 phase, but prefer glycolysis in S phase. Mechanistically, coupling cell cycle with metabolism is largely achieved by timely destruction of IDH1/2, key TCA cycle enzymes, in a Skp2-dependent manner. As such, depleting SKP2 abolishes cell cycle-dependent fluctuation of IDH1 protein abundance, leading to reduced glycolysis in S phase. Furthermore, elevated Skp2 abundance in prostate cancer cells destabilizes IDH1 to favor glycolysis and subsequent tumorigenesis. Therefore, our study reveals a mechanistic link between two cancer hallmarks, aberrant cell cycle and addiction to glycolysis, and provides the underlying mechanism for the coupling of metabolic fluctuation with periodic cell cycle in mammalian cells.
SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection
Autophagy is an essential cellular process affecting virus infections and other diseases and Beclin1 (BECN1) is one of its key regulators. Here, we identified S-phase kinase-associated protein 2 (SKP2) as E3 ligase that executes lysine-48-linked poly-ubiquitination of BECN1, thus promoting its proteasomal degradation. SKP2 activity is regulated by phosphorylation in a hetero-complex involving FKBP51, PHLPP, AKT1, and BECN1. Genetic or pharmacological inhibition of SKP2 decreases BECN1 ubiquitination, decreases BECN1 degradation and enhances autophagic flux. Middle East respiratory syndrome coronavirus (MERS-CoV) multiplication results in reduced BECN1 levels and blocks the fusion of autophagosomes and lysosomes. Inhibitors of SKP2 not only enhance autophagy but also reduce the replication of MERS-CoV up to 28,000-fold. The SKP2-BECN1 link constitutes a promising target for host-directed antiviral drugs and possibly other autophagy-sensitive conditions. Here, Gassen et al . show that S-phase kinase-associated protein 2 (SKP2) is responsible for lysine-48-linked poly-ubiquitination of beclin 1, resulting in its proteasomal degradation, and that inhibition of SKP2 enhances autophagy and reduces replication of MERS coronavirus.
The NUCKS1-SKP2-p21/p27 axis controls S phase entry
Efficient entry into S phase of the cell cycle is necessary for embryonic development and tissue homoeostasis. However, unscheduled S phase entry triggers DNA damage and promotes oncogenesis, underlining the requirement for strict control. Here, we identify the NUCKS1-SKP2-p21/p27 axis as a checkpoint pathway for the G1/S transition. In response to mitogenic stimulation, NUCKS1, a transcription factor, is recruited to chromatin to activate expression of SKP2 , the F-box component of the SCF SKP2 ubiquitin ligase, leading to degradation of p21 and p27 and promoting progression into S phase. In contrast, DNA damage induces p53-dependent transcriptional repression of NUCKS1 , leading to SKP2 downregulation, p21/p27 upregulation, and cell cycle arrest. We propose that the NUCKS1-SKP2-p21/p27 axis integrates mitogenic and DNA damage signalling to control S phase entry. The Cancer Genome Atlas (TCGA) data reveal that this mechanism is hijacked in many cancers, potentially allowing cancer cells to sustain uncontrolled proliferation. Entry into S phase of the cell cycle is regulated positively by mitogens and negatively by DNA damage; however, how balance of these signals is achieved is not well known. Here the authors show that the NUCKS1-SKP2- p21/p27 axis integrates this information, where the NUCKS1 transcription factor affects levels of p21/p27 to readout the mitogen:DNA damage balance and regulate S phase entry decision.
Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence
Cellular senescence has been recently shown to have an important role in opposing tumour initiation and promotion. Senescence induced by oncogenes or by loss of tumour suppressor genes is thought to critically depend on induction of the p19 Arf –p53 pathway. The Skp2 E3-ubiquitin ligase can act as a proto-oncogene and its aberrant overexpression is frequently observed in human cancers. Here we show that although Skp2 inactivation on its own does not induce cellular senescence, aberrant proto-oncogenic signals as well as inactivation of tumour suppressor genes do trigger a potent, tumour-suppressive senescence response in mice and cells devoid of Skp2 . Notably, Skp2 inactivation and oncogenic-stress-driven senescence neither elicit activation of the p19 Arf –p53 pathway nor DNA damage, but instead depend on Atf4, p27 and p21. We further demonstrate that genetic Skp2 inactivation evokes cellular senescence even in oncogenic conditions in which the p19 Arf –p53 response is impaired, whereas a Skp2–SCF complex inhibitor can trigger cellular senescence in p53/Pten-deficient cells and tumour regression in preclinical studies. Our findings therefore provide proof-of-principle evidence that pharmacological inhibition of Skp2 may represent a general approach for cancer prevention and therapy. Senescence kills tumours Recent studies suggest that cellular senescence — an irreversible form of cell-cycle arrest — can halt tumour growth in vitro . Hui-Kuan Lin et al . now identify a previously unknown pathway that drives senescence without the involvement of most of the known mediators of senescence. Instead, it signals via the transcription factor Atf6, and the cyclin-dependent kinase inhibitors p27 and p21. The pathway is uncovered by inactivation of the proto-oncogene Skp2 , but only in the context of oncogenic signalling. Targeting the Skp2 complex pharmacologically restricts tumorigenesis by inducing cellular senescence, suggesting that such drugs may be effective in cancer prevention and therapy. Cellular senescence — an irreversible cell-cycle arrest — has been implicated in suppressing tumour formation or growth. A new cellular signalling pathway that drives senescence has now been identified. This pathway does not involve most known mediators of senescence, and instead signals via the proteins Atf4, p27 and p21. Inactivating the proto-oncogene Skp2 in the context of oncogenic signalling can induce senescence through this new pathway, indicating that drugs that target Skp2 might be useful in cancer treatment.
AMPK–SKP2–CARM1 signalling cascade in transcriptional regulation of autophagy
An investigation into the nuclear events involved in autophagy regulation identifies the histone arginine methyltransferase CARM1 as a transcriptional co-activator of transcription factor TFEB; CARM1 levels are decreased by the SKP2-containing E3 ubiquitin ligase and increased during autophagy induction after nutrient starvation. Autophagy induction under nutrient starvation Cells can respond to nutrient starvation with the process of autophagy, which allows cytoplasmic proteins and organelles to be degraded by the lysosome. Here, Sung Hee Baek and colleagues investigate the nuclear events involved in regulating autophagy and identify the enzyme CARM1 (co-activator-associated arginine methyltransferase 1) as a transcriptional co-activator for the autophagy transcription factor TFEB. Levels of CARM1 are repressed by a SKP2-containing E3 ubiquitin ligase SCF and are increased during autophagy induction after nutrient starvation. Autophagy is a highly conserved self-digestion process, which is essential for maintaining homeostasis and viability in response to nutrient starvation 1 , 2 , 3 , 4 . Although the components of autophagy in the cytoplasm have been well studied 5 , 6 , the molecular basis for the transcriptional and epigenetic regulation of autophagy is poorly understood. Here we identify co-activator-associated arginine methyltransferase 1 (CARM1) as a crucial component of autophagy in mammals. Notably, CARM1 stability is regulated by the SKP2-containing SCF (SKP1-cullin1-F-box protein) E3 ubiquitin ligase in the nucleus, but not in the cytoplasm, under nutrient-rich conditions. Furthermore, we show that nutrient starvation results in AMP-activated protein kinase (AMPK)-dependent phosphorylation of FOXO3a in the nucleus, which in turn transcriptionally represses SKP2. This repression leads to increased levels of CARM1 protein and subsequent increases in histone H3 Arg17 dimethylation. Genome-wide analyses reveal that CARM1 exerts transcriptional co-activator function on autophagy-related and lysosomal genes through transcription factor EB (TFEB). Our findings demonstrate that CARM1-dependent histone arginine methylation is a crucial nuclear event in autophagy, and identify a new signalling axis of AMPK–SKP2–CARM1 in the regulation of autophagy induction after nutrient starvation.
Mechanisms and function of substrate recruitment by F-box proteins
Key Points F-box proteins are the substrate-targeting subunits of S phase kinase-associated protein 1 (SKP1)–cullin 1 (CUL1)–F-box protein (SCF) ubiquitin ligase complexes. In mammals, approximately 70 F-box proteins, each able to target multiple substrates, enable SCF complexes to control the levels of many regulatory proteins with diverse functions. F-box protein substrates are recognized through degradation motifs (degrons). The best-characterized F-box proteins recognize conserved consensus degron sequences that include phosphorylated amino acids (phosphodegrons). Although phosphodegrons remain the most common mechanism of substrate recognition by F-box proteins, many additional degron recognition mechanisms, both dependent on or independent of post-translational modifications, can facilitate substrate targeting. Because an individual F-box protein can regulate the degradation of multiple substrates, it can control multiple different pathways in response to various different stimuli. Therefore, F-box proteins can have context-dependent functions, including functions that may seem contradictory. The activity of F-box proteins can also be controlled directly through several mechanisms, including localization, expression and degradation. F-box proteins have key roles in cell regulatory mechanisms, and they are frequently dysregulated in diseases. Historically, the F-box protein family has been examined in the context of cancer, but these proteins have emerging roles in a wide range of other diseases. Through their role as substrate adaptors for S phase kinase-associated protein 1 (SKP1)–cullin 1 (CUL1)–F-box protein (SCF) ubiquitin ligase complexes, F-box proteins control the degradation of a large number of proteins with wide-ranging functions. Studying the mechanisms of substrate recruitment by F-box proteins has increased our understanding of their dysregulation in disease and might lead to targeted therapies. S phase kinase-associated protein 1 (SKP1)–cullin 1 (CUL1)–F-box protein (SCF) ubiquitin ligase complexes use a family of F-box proteins as substrate adaptors to mediate the degradation of a large number of regulatory proteins involved in diverse processes. The dysregulation of SCF complexes and their substrates contributes to multiple pathologies. In the 14 years since the identification and annotation of the F-box protein family, the continued identification and characterization of novel substrates has greatly expanded our knowledge of the regulation of substrate targeting and the roles of F-box proteins in biological processes. Here, we focus on the evolution of our understanding of substrate recruitment by F-box proteins, the dysregulation of substrate recruitment in disease and potential avenues for F-box protein-directed disease therapies.
Multiple regulatory mechanisms of the biological function of NRF3 (NFE2L3) control cancer cell proliferation
Accumulated evidence suggests a physiological relationship between the transcription factor NRF3 (NFE2L3) and cancers. Under physiological conditions, NRF3 is repressed by its endoplasmic reticulum (ER) sequestration. In response to unidentified signals, NRF3 enters the nucleus and modulates gene expression. However, molecular mechanisms underlying the nuclear translocation of NRF3 and its target gene in cancer cells remain poorly understood. We herein report that multiple regulation of NRF3 activities controls cell proliferation. Our analyses reveal that under physiological conditions, NRF3 is rapidly degraded by the ER-associated degradation (ERAD) ubiquitin ligase HRD1 and valosin-containing protein (VCP) in the cytoplasm. Furthermore, NRF3 is also degraded by β-TRCP, an adaptor for the Skp1-Cul1-F-box protein (SCF) ubiquitin ligase in the nucleus. The nuclear translocation of NRF3 from the ER requires the aspartic protease DNA-damage inducible 1 homolog 2 (DDI2) but does not require inhibition of its HRD1-VCP-mediated degradation. Finally, NRF3 mediates gene expression of the cell cycle regulator U2AF homology motif kinase 1 (UHMK1) for cell proliferation. Collectively, our study provides us many insights into the molecular regulation and biological function of NRF3 in cancer cells.
Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation
Intracellular ISG15 is an interferon (IFN)-α/β-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-α/β-dependent antiviral immunity in mice. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-γ-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-α/β immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi-Goutières syndrome and spondyloenchondrodysplasia. We further show that an absence of intracellular ISG15 in the patients' cells prevents the accumulation of USP18, a potent negative regulator of IFN-α/β signalling, resulting in the enhancement and amplification of IFN-α/β responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-α/β immunity. In humans, intracellular ISG15 is IFN-α/β-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-α/β and prevention of IFN-α/β-dependent autoinflammation.
Skp2 stabilizes Mcl-1 and confers radioresistance in colorectal cancer
Overexpression of Skp2 plays a critical role in tumorigenesis and correlates with poor prognosis in human malignancies. Thus, Skp2 has been proposed as an attractive target for anti-tumor interventions. The expression of Skp2 in human colorectal cancer (CRC) and the role of Skp2 in tumorigenic properties and irradiation sensitivities of CRC cells were examined by anchorage-dependent and -independent growth assays, immunoblot, flow cytometry, immunohistochemical staining, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiments. Skp2 is highly expressed in CRC patient tissues. Blocking Skp2 expression reduces the tumorigenic properties of CRC cells in vitro and in vivo. Depletion of Skp2 confers sensitivity to irradiation of CRC cells. Skp2 deficiency enhances irradiation-induced intrinsic apoptosis by facilitating E3 ligase FBW7-mediated Mcl-1 ubiquitination and degradation. Knockout of Skp2 sensitizes CRC cells to irradiation treatments in vivo. Our findings indicate that Skp2 stabilizes Mcl-1, and targeting Skp2 in combination with traditional radiotherapy might be efficacious in treating CRC.