Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"S63845"
Sort by:
Pre-sensitization of Malignant B Cells Through Venetoclax Significantly Improves the Cytotoxic Efficacy of CD19.CAR-T Cells
2020
Chimeric antigen receptor (CAR) T cell therapy has shown promising responses in patients with refractory or relapsed aggressive B-cell malignancies that are resistant to conventional chemotherapy or stem cell transplantation. A potentially combinatorial therapeutic strategy may be the inhibition of anti-apoptotic Bcl-2 family proteins, overexpressed in most cancer cells. In this study we investigated the combination of 3rd-generation CD19.CAR-T cells and the BH3 mimetics venetoclax, a Bcl-2 inhibitor, or S63845, a Mcl-1 inhibitor, under three different treatment conditions: pre-sensitization of cancer cells with BH3 mimetics followed by CAR-T cell treatment, simultaneous combination therapy, and the administration of BH3 mimetics after CAR-T cell treatment. Our results showed that administration of CAR-T cells and BH3 mimetics had a significant effect on the quantity and quality of CD19.CAR-T cells. The administration of BH3 mimetics prior to CAR-T cell therapy exerted an enhanced cytotoxic efficacy by upregulating the CD19 expression and pro-apoptotic proteins in highly sensitive tumor cells, and thereby improving both CD19.CAR-T cell cytotoxicity and persistence. In simultaneous and post-treatment approaches, however, the quantity of CAR-T cells was adversely affected. Our findings indicate pre-sensitization of highly sensitive tumor cells with BH3 mimetics could enhance the cytotoxic efficacy of CAR-T cell treatment.
Journal Article
Synergistic Action of MCL-1 Inhibitor with BCL-2/BCL-XL or MAPK Pathway Inhibitors Enhances Acute Myeloid Leukemia Cell Apoptosis and Differentiation
by
Kolaczkowska, Elzbieta
,
Opydo, Małgorzata
,
Mlyczyńska, Ewa
in
Antineoplastic Agents - pharmacology
,
Apoptosis
,
Apoptosis Regulatory Proteins - metabolism
2023
Acute myeloid leukemia (AML) is a hematological malignancy characterized by excessive proliferation of abnormal myeloid precursors accompanied by a differentiation block and inhibition of apoptosis. Increased expression of an anti-apoptotic MCL-1 protein was shown to be critical for the sustained survival and expansion of AML cells. Therefore, herein, we examined the pro-apoptotic and pro-differentiating effects of S63845, a specific inhibitor of MCL-1, in a single-agent treatment and in combination with BCL-2/BCL-XL inhibitor, ABT-737, in two AML cell lines: HL-60 and ML-1. Additionally, we determined whether inhibition of the MAPK pathway had an impact on the sensitivity of AML cells to S63845. To assess AML cells’ apoptosis and differentiation, in vitro studies were performed using PrestoBlue assay, Coulter electrical impedance method, flow cytometry, light microscopy and Western blot techniques. S63845 caused a concentration-dependent decrease in the viability of HL-60 and ML-1 cells and increased the percentage of apoptotic cells. Combined treatment with S63845 and ABT-737 or MAPK pathway inhibitor enhanced apoptosis but also induced differentiation of tested cells, as well as altering the expression of the MCL-1 protein. Taken together, our data provide the rationale for further studies regarding the use of MCL-1 inhibitor in combination with other pro-survival protein inhibitors.
Journal Article
Pharmaceutical Drug Metformin and MCL1 Inhibitor S63845 Exhibit Anticancer Activity in Myeloid Leukemia Cells via Redox Remodeling
by
Skliutė, Giedrė
,
Navakauskienė, Rūta
,
Vitkevičienė, Aida
in
acute myeloid leukemia (AML)
,
Antidiabetics
,
Apoptosis
2021
Metabolic landscape and sensitivity to apoptosis induction play a crucial role in acute myeloid leukemia (AML) resistance. Therefore, we investigated the effect of metformin, a medication that also acts as an inhibitor of oxidative phosphorylation (OXPHOS), and MCL-1 inhibitor S63845 in AML cell lines NB4, KG1 and chemoresistant KG1A cells. The impact of compounds was evaluated using fluorescence-based metabolic flux analysis, assessment of mitochondrial Δψ and cellular ROS, trypan blue exclusion, Annexin V-PI and XTT tests for cell death and cytotoxicity estimations, also RT-qPCR and Western blot for gene and protein expression. Treatment with metformin resulted in significant downregulation of OXPHOS; however, increase in glycolysis was observed in NB4 and KG1A cells. In contrast, treatment with S63845 slightly increased the rate of OXPHOS in KG1 and KG1A cells, although it profoundly diminished the rate of glycolysis. Generally, combined treatment had stronger inhibitory effects on cellular metabolism and ATP levels. Furthermore, results revealed that treatment with metformin, S63845 and their combinations induced apoptosis in AML cells. In addition, level of apoptotic cell death correlated with cellular ROS induction, as well as with downregulation of tumor suppressor protein MYC. In summary, we show that modulation of redox-stress could have a potential anticancer activity in AML cells.
Journal Article
Osteosarcoma cells depend on MCL-1 for survival, and osteosarcoma metastases respond to MCL-1 antagonism plus regorafenib in vivo
2024
Osteosarcoma is the most common form of primary bone cancer, which primarily afflicts children and adolescents. Chemotherapy, consisting of doxorubicin, cisplatin and methotrexate (MAP) increased the 5-year osteosarcoma survival rate from 20% to approximately 60% by the 1980s. However, osteosarcoma survival rates have remained stagnant for several decades. Patients whose disease fails to respond to MAP receive second-line treatments such as etoposide and, in more recent years, the kinase inhibitor regorafenib. BCL-2 and its close relatives enforce cellular survival and have been implicated in the development and progression of various cancer types. BH3-mimetics antagonize pro-survival members of the BCL-2 family to directly stimulate apoptosis. These drugs have been proven to be efficacious in other cancer types, but their use in osteosarcoma has been relatively unexplored to date. We investigated the potential efficacy of BH3-mimetics against osteosarcoma cells in vitro and examined their cooperation with regorafenib in vivo. We demonstrated that osteosarcoma cell lines could be killed through inhibition of MCL-1 combined with BCL-2 or BCL-x
L
antagonism. Inhibition of MCL-1 also sensitized osteosarcoma cells to killing by second-line osteosarcoma treatments, particularly regorafenib. Importantly, we found that inhibition of MCL-1 with the BH3-mimetic S63845 combined with regorafenib significantly prolonged the survival of mice bearing pulmonary osteosarcoma metastases. Together, our results highlight the importance of MCL-1 in osteosarcoma cell survival and present a potential therapeutic avenue that may improve metastatic osteosarcoma patient outcomes.
Journal Article
Myeloid Cell Leukemia 1 Small Molecule Inhibitor S63845 Synergizes with Cisplatin in Triple-Negative Breast Cancer
2023
Triple-negative breast cancer (TNBC) is an aggressive cancer that lacks specific molecular targets that are often used for therapy. The refractory rate of TNBC to broad-spectrum chemotherapy remains high; however, the combination of newly developed treatments with the current standard of care has delivered promising anti-tumor effects. One mechanism employed by TNBC to avoid cell death is the increased expression of the anti-apoptotic protein, myeloid cell leukemia 1 (MCL1). Multiple studies have demonstrated that increased MCL1 expression enables resistance to platinum-based chemotherapy. In addition to suppressing apoptosis, we recently demonstrated that MCL1 also binds and negatively regulates the transcriptional activity of TP73. TP73 upregulation is a critical driver of cisplatin-induced DNA damage response, and ultimately, cell death. We therefore sought to determine if the coadministration of an MCL1-targeted inhibitor with cisplatin could produce a synergistic response in TNBC. This study demonstrates that the MCL1 inhibitor, S63845, combined with cisplatin synergizes by inducing apoptosis while also decreasing proliferation in a subset of TNBC cell lines. The use of combined MCL1 inhibitors with cisplatin in TNBC effectively initiates TAp73 anti-tumor effects on cell cycle arrest and apoptosis. This observation provides a molecular profile that can be exploited to identify sensitive TNBCs.
Journal Article
Pro-Apoptotic Activity of MCL-1 Inhibitor in Trametinib-Resistant Melanoma Cells Depends on Their Phenotypes and Is Modulated by Reversible Alterations Induced by Trametinib Withdrawal
by
Koziej, Paulina
,
Czyz, Małgorzata
,
Hartman, Mariusz L.
in
Annexin V
,
Antimitotic agents
,
Antineoplastic agents
2023
Background: Although BRAFV600/MEK inhibitors improved the treatment of melanoma patients, resistance is acquired almost inevitably. Methods: Trametinib withdrawal/rechallenge and MCL-1 inhibition in trametinib-resistance models displaying distinct p-ERK1/2 levels were investigated. Results: Trametinib withdrawal/rechallenge caused reversible changes in ERK1/2 activity impacting the balance between pro-survival and pro-apoptotic proteins. Reversible alterations were found in MCL-1 levels and MCL-1 inhibitors, BIM and NOXA. Taking advantage of melanoma cell dependency on MCL-1 for survival, we used S63845. While it was designed to inhibit MCL-1 activity, we showed that it also significantly reduced NOXA levels. S63845-induced apoptosis was detected as the enhancement of Annexin V-positivity, caspase-3/7 activation and histone H2AX phosphorylation. Percentages of Annexin V-positive cells were increased most efficiently in trametinib-resistant melanoma cells displaying the p-ERK1/2low/MCL-1low/BIMhigh/NOXAlow phenotype with EC50 values at concentrations as low as 0.1 μM. Higher ERK1/2 activity associated with increased MCL-1 level and reduced BIM level limited pro-apoptotic activity of S63845 further influenced by a NOXA level. Conclusions: Our study supports the notion that the efficiency of an agent designed to target a single protein can largely depend on the phenotype of cancer cells. Thus, it is important to define appropriate phenotype determinants to stratify the patients for the novel therapy.
Journal Article
Heterogeneous Pattern of Dependence on Anti-Apoptotic BCL-2 Family Proteins upon CHOP Treatment in Diffuse Large B-Cell Lymphoma
by
van den Berg, Anke
,
de Jong, Mathilde Rikje Willemijn
,
van Meerten, Tom
in
Aniline Compounds - pharmacology
,
Antineoplastic Agents - pharmacology
,
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
2019
Expression of the anti-apoptotic B-cell lymphoma 2 (BCL-2) protein in patients with diffuse large B-cell lymphoma (DLBCL) strongly correlates with resistance to standard therapy with cyclophosphamide, vincristine, doxorubicin, prednisolone, and rituximab (R-CHOP). Although studies focus mainly on the contribution of BCL-2, here we also investigate the contribution of other anti-apoptotic proteins to CHOP-therapy resistance in DLBCL. Functional dynamic BCL-2 homology (BH)3 profiling was applied to DLBCL cell lines upon CHOP treatment or single CHOP compounds. Cell-specific anti-apoptotic dependencies were validated with corresponding BH3-mimetics. We found high expression of anti-apoptotic BCL-2, MCL-1, and BCL-XL in DLBCL cell lines and patients. CHOP treatment resulted in both enhanced and altered anti-apoptotic dependency. Enhanced sensitivity to different BH3-mimetics after CHOP treatment was confirmed in specific cell lines, indicating heterogeneity of CHOP-induced resistance in DLBCL. Analysis of single CHOP compounds demonstrated that similar changes could also be induced by doxorubicin or vincristine, providing evidence for clinical combination therapies of doxorubicin or vincristine with BH3-mimetics in DLBCL. In conclusion, we show for the first time that CHOP treatment induces increased anti-apoptotic dependency on MCL-1 and BCL-XL, and not just BCL-2. These results provide new perspectives for the treatment of CHOP-resistant DLBCL and underline the potential of BH3 profiling in predicting therapy outcomes.
Journal Article
Comprehensive characterization of central BCL-2 family members in aberrant eosinophils and their impact on therapeutic strategies
2022
PurposeHypereosinophilia represents a heterogenous group of severe medical conditions characterized by elevated numbers of eosinophil granulocytes in peripheral blood, bone marrow or tissue. Treatment options for hypereosinophilia remain limited despite recent approaches including IL-5-targeted monoclonal antibodies and tyrosine kinase inhibitors.MethodsTo understand aberrant survival patterns and options for pharmacologic intervention, we characterized BCL-2-regulated apoptosis signaling by testing for BCL-2 family expression levels as well as pharmacologic inhibition using primary patient samples from diverse subtypes of hypereosinophilia (hypereosinophilic syndrome n = 18, chronic eosinophilic leukemia not otherwise specified n = 9, lymphocyte-variant hypereosinophilia n = 2, myeloproliferative neoplasm with eosinophilia n = 2, eosinophilic granulomatosis with polyangiitis n = 11, reactive eosinophilia n = 3).ResultsContrary to published literature, we found no difference in the levels of the lncRNA Morrbid and its target BIM. Yet, we identified a near complete loss of expression of pro-apoptotic PUMA as well as a reduction in anti-apoptotic BCL-2. Accordingly, BCL-2 inhibition using venetoclax failed to achieve cell death induction in eosinophil granulocytes and bone marrow mononuclear cells from patients with hypereosinophilia. In contrast, MCL1 inhibition using S63845 specifically decreased the viability of bone marrow progenitor cells in patients with hypereosinophilia. In patients diagnosed with Chronic Eosinophilic Leukemia (CEL-NOS) or Myeloid and Lymphatic Neoplasia with hypereosinophilia (MLN-Eo) repression of survival was specifically powerful.ConclusionOur study shows that MCL1 inhibition might be a promising therapeutic option for hypereosinophilia patients specifically for CEL-NOS and MLN-Eo.
Journal Article
Metformin as an Enhancer for the Treatment of Chemoresistant CD34+ Acute Myeloid Leukemia Cells
by
Charkavliuk, Sergej
,
Krastinaite, Indre
,
Borutinskaite, Veronika Viktorija
in
Acute myeloid leukemia
,
adhesion
,
adjuvants
2024
Acute myeloid leukemia is the second most frequent type of leukemia in adults. Due to a high risk of development of chemoresistance to first-line chemotherapy, the survival rate of patients in a 5-year period is below 30%. One of the reasons is that the AML population is heterogeneous, with cell populations partly composed of very primitive CD34+CD38- hematopoietic stem/progenitor cells, which are often resistant to chemotherapy. First-line treatment with cytarabine and idarubicin fails to inhibit the proliferation of CD34+CD38- cells. In this study, we investigated Metformin’s effect with or without first-line conventional chemotherapy, or with other drugs like venetoclax and S63845, on primitive and undifferentiated CD34+ AML cells in order to explore the potential of Metformin or S63845 to serve as adjuvant therapy for AML. We found that first-line conventional chemotherapy treatment inhibited the growth of cells and arrested the cells in the S phase of the cell cycle; however, metformin affected the accumulation of cells in the G2/M phase. We observed that CD34+ KG1a cells respond better to lower doses of cytarabine or idarubicin in combination with metformin. Also, we determined that treatment with cytarabine, venetoclax, and S63845 downregulated the strong tendency of CD34+ KG1a cells to form cell aggregates in culture due to the downregulation of leukemic stem cell markers like CD34 and CD44, as well as adhesion markers. Also, we found that idarubicin slightly upregulated myeloid differentiation markers, CD11b and CD14. Treatment with cytarabine, idarubicin, venetoclax, metformin, and S63845 upregulated some cell surface markers like HLA-DR expression, and metformin upregulated CD9, CD31, and CD105 cell surface marker expression. In conclusion, we believe that metformin has the potential to be used as an adjuvant in the treatment of resistant-to-first-line-chemotherapy AML cells. Also, we believe that the results of our study will stimulate further research and the potential use of changes in the expression of cell surface markers in the development of new therapeutic strategies.
Journal Article
Synergistic apoptotic effect of Mcl-1 inhibition and doxorubicin on B-cell precursor acute lymphoblastic leukemia cells
by
Safa, Majid
,
Ebrahimi, Elham
,
Bashash, Davood
in
Acute lymphoblastic leukemia
,
Animal Anatomy
,
Animal Biochemistry
2022
Background
Myeloid cell leukemia-1 (MCL-1) is a component of the Bcl-2 anti-apoptotic family that plays a key role in cell proliferation and differentiation. Despite tremendous improvements toward identification of the role of MCL-1 in leukemia progression, the functional significance and molecular mechanism behind the effect of MCL-1 overexpression on the proliferation of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has not been clarified. In addition, less well appreciated is the effect of MCL-1 inhibition on the potentiation of doxorubicin-induced apoptosis in BCP-ALL cell lines. In the present study, we aimed to shed light on the anti-cancer properties of S63845, a potent Mcl-1 inhibitor, in BCP-ALL cell lines either alone or in combination with a chemotherapeutic drug.
Methods and results
Mononuclear cells from patients with Pre-B ALL and BCP-ALL cell lines were treated with S63845 in presence or absence of doxorubicin, induction of apoptosis was evaluated using Annexin-V/PI staining kit. mRNA and protein expression levels were assessed by qRT-PCR and western blot analysis, respectively. Our results declared that inhibition of Mcl-1 impairs cell growth and induces apoptosis in pre-B ALL cells through activation of caspase-3 and up-regulation of a repertoire of pro-apoptotic Bcl-2 family. Additionally, S63845 acts synergically with doxorubicin to induce apoptosis in BCP-ALL cell lines.
Conclusions
Our data declared that MCL-1 inhibition alone or in combination with a chemotherapeutic agent is considered an appealing strategy for the induction of apoptosis in BCP-ALL cells.
Journal Article