Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
15
result(s) for
"SCIENCE / Geophysics. bisacsh"
Sort by:
The Physics of Rock Failure and Earthquakes
2013
Despite significant advances in the understanding of earthquake generation processes and derivation of underlying physical laws, controversy remains regarding the constitutive law for earthquake ruptures and how it should be formulated. Laboratory experiments are necessary to obtain high-resolution measurements that allow the physical nature of shear rupture processes to be deduced, and to resolve the controversy. This important book provides a deeper understanding of earthquake processes from nucleation to their dynamic propagation. Its key focus is a deductive approach based on laboratory-derived physical laws and formulae, such as a unifying constitutive law, a constitutive scaling law, and a physical model of shear rupture nucleation. Topics covered include: the fundamentals of rock failure physics, earthquake generation processes, physical scale dependence, and large-earthquake generation cycles. Designed for researchers and professionals in earthquake seismology, rock failure physics, geology and earthquake engineering, it is also a valuable reference for graduate students.
The Self-Potential Method
by
Revil, André
,
Jardani, Abderrahim
in
Geophysical methods
,
Prospecting
,
Prospecting -- Geophysical methods
2013
The self-potential method enables non-intrusive assessment and imaging of disturbances in electrical currents of conductive subsurface materials. It has an increasing number of applications, from mapping fluid flow in the subsurface of the Earth to detecting preferential flow paths in earth dams and embankments. This book provides the first full overview of the fundamental concepts of this method and its applications in the field. It discusses a historical perspective, laboratory investigations undertaken, the inverse problem and seismoelectric coupling, and concludes with the application of the self-potential method to geohazards, water resources and hydrothermal systems. Chapter exercises, online datasets and analytical software enable the reader to put the theory into practice. This book is a key reference for academic researchers and professionals working in the areas of geophysics, environmental science, hydrology and geotechnical engineering. It will also be valuable reading for related graduate courses.
Earthquakes
2014,2013
This book is the first comprehensive and methodologically rigorous analysis of earthquake occurrence. Models based on the theory of the stochastic multidimensional point processes are employed to approximate the earthquake occurrence pattern and evaluate its parameters. The Author shows that most of these parameters have universal values. These results help explain the classical earthquake distributions: Omori's law and the Gutenberg-Richter relation.
The Author derives a new negative-binomial distribution for earthquake numbers, instead of the Poisson distribution, and then determines a fractal correlation dimension for spatial distributions of earthquake hypocenters. The book also investigates the disorientation of earthquake focal mechanisms and shows that it follows the rotational Cauchy distribution. These statistical and mathematical advances make it possible to produce quantitative forecasts of earthquake occurrence. In these forecasts earthquake rate in time, space, and focal mechanism orientation is evaluated.
Acquisition and Analysis of Terrestrial Gravity Data
2013
Gravity surveys have a huge range of applications, indicating density variations in the subsurface and identifying man-made structures, local changes of rock type or even deep-seated structures at the crust/mantle boundary. This important one-stop book combines an introductory manual of practical procedures with a full explanation of analysis techniques, enabling students, geophysicists, geologists and engineers to understand the methodology, applications and limitations of a gravity survey. Filled with examples from a wide variety of acquisition problems, the book instructs students in avoiding common mistakes and misconceptions. It explores the increasing near-surface geophysical applications being opened up by improvements in instrumentation and provides more advance-level material as a useful introduction to potential theory. This is a key text for graduate students of geophysics and for professionals using gravity surveys, from civil engineers and archaeologists to oil and mineral prospectors and geophysicists seeking to learn more about the Earth's deep interior.
Global Optimization Methods in Geophysical Inversion
by
Sen, Mrinal K.
,
Stoffa, Paul L.
in
Geological modeling
,
Geophysics
,
Geophysics -- Mathematical models
2013
Providing an up-to-date overview of the most popular global optimization methods used in interpreting geophysical observations, this new edition includes a detailed description of the theoretical development underlying each method and a thorough explanation of the design, implementation and limitations of algorithms. New and expanded chapters provide details of recently developed methods, such as the neighborhood algorithm, particle swarm optimization, hybrid Monte Carlo and multi-chain MCMC methods. Other chapters include new examples of applications, from uncertainty in climate modeling to whole earth studies. Several different examples of geophysical inversion, including joint inversion of disparate geophysical datasets, are provided to help readers design algorithms for their own applications. This is an authoritative and valuable text for researchers and graduate students in geophysics, inverse theory and exploration geoscience, and an important resource for professionals working in engineering and petroleum exploration.
Unmanned Aerial Remote Sensing
by
Green, David R.
,
Karachok, Alex R.
,
Gregory, Billy J.
in
Aerospace Engineering
,
Drone aircraft in remote sensing
,
ENGnetBASE
2021,2020
Unmanned Aircraft Systems (UASs) are a rapidly evolving technology with an expanding array of diverse applications. In response to the continuing evolution of this technology, this book discusses unmanned aerial vehicles (UAVs) and similar systems, platforms, and sensors, as well as exploring some of their environmental applications. It explains how they can be used for mapping, monitoring, and modelling a wide variety of different environmental aspects and, at the same time, addresses some of the current constraints placed on realising the potential use of the technology such as flight duration and distance, safety, and the invasion of privacy.
Features:
Provides necessary theoretical foundations for pertinent subject matter areas
Introduces the role and value of UAVs for geographical data acquisition and the ways to acquire and process the data
Provides a synthesis of ongoing research and a focus on the use of technology for small-scale image and spatial data acquisition in an environmental context
Written by experts of the technology who bring together UAS tools and resources for environmental specialists.
Unmanned Aerial Remote Sensing: UAS for Environmental Applications is an excellent resource for any practitioner utilising remote sensing and other geospatial technologies for environmental applications, such as conservation, research, and planning. Students and academics in information science, environment and natural resources, geosciences, and geography will likewise find this comprehensive book a useful and informative resource.
Trace metals in aquatic systems
2013
This book provides a detailed examination of the concentration, form and cycling of trace metals and metalloids through the aquatic biosphere, and has sections dealing with the atmosphere, the ocean, lakes and rivers.
The Lithosphere
2011
Presenting a coherent synthesis of lithosphere studies, this book covers a range of geophysical methods (seismic reflection, refraction, and receiver function methods; elastic and anelastic seismic tomography; electromagnetic and magnetotelluric methods; thermal, gravity and rheological models), complemented by petrologic and laboratory data on rock properties. It also provides a critical discussion of the uncertainties, assumptions, and resolution issues that are inherent in the different methods and models of the lithosphere. Multidisciplinary in scope, global in geographical extent, and covering a wide variety of tectonics settings across 3.5 billion years of Earth history, this book presents a comprehensive overview of lithospheric structure and evolution. It is a core reference for researchers and advanced students in geophysics, geodynamics, tectonics, petrology, and geochemistry, and for petroleum and mining industry professionals.