Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,107,927
result(s) for
"SCIENCE / Physics."
Sort by:
The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations
2019
During its approach to asteroid (101955) Bennu, NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft surveyed Bennu’s immediate environment, photometric properties, and rotation state. Discovery of a dusty environment, a natural satellite, or unexpected asteroid characteristics would have had consequences for the mission’s safety and observation strategy. Here we show that spacecraft observations during this period were highly sensitive to satellites (sub-meter scale) but reveal none, although later navigational images indicate that further investigation is needed. We constrain average dust production in September 2018 from Bennu’s surface to an upper limit of 150 g/s averaged over 34 min. Bennu’s disk-integrated photometric phase function validates measurements from the pre-encounter astronomical campaign. We demonstrate that Bennu’s rotation rate is accelerating continuously at 3.63 ± 0.52 × 10^(–6) degrees/sq. day, likely due to the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, with evolutionary implications.
Journal Article
Effective radiative forcing and adjustments in CMIP6 models
by
Olivié, Dirk
,
Myhre, Gunnar
,
Wiltshire, Andy
in
Aerosol-cloud interactions
,
Aerosols
,
Air pollution
2020
The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W/sq. m, comprised of 1.81 (±0.09) W/sq. m from CO2, 1.08 (± 0.21) W/sq. m from other well-mixed greenhouse gases, −1.01 (± 0.23) W/sq. m from aerosols and −0.09 (±0.13) W/sq. m from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W/sq. m. The majority of the remaining 0.21 W/sq. m is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W/sq. m, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
Journal Article
Evidence for widespread hydrated minerals on asteroid (101955) Bennu
2019
Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth.Signatures of phyllosilicate-like hydrated minerals are widespread on Bennu’s surface, indicating significant aqueous alteration. The lack of spatial variations in the spectra down to the scale of ~100 m indicates both a relatively uniform particle size distribution and a lack of compositional segregation, possibly due to surficial redistribution processes.
Journal Article
Oxidation Resistance Improvement of Ni-Base Single-Crystal Superalloy Melted in a CaO Crucible
by
Osawa, Makoto
,
Yokokawa, Tadaharu
,
Sugiyama, Takuya
in
Aluminum oxide
,
Calcium oxide
,
Creep tests
2019
An advanced Ni-base single-crystal superalloy, TMS-238, has the highest temperature capability, but there is still potential to improve its high-temperature properties. In the present study, aiming for that further improvement, TMS-238 was melted in a CaO crucible, which replaced an Al2O3 crucible. Creep tests at 1100 °C/137 MPa and cyclic oxidation tests at 1100 °C were conducted to compare the high-temperature properties of TMS-238 melted in an Al2O3vs a CaO crucible. Regardless of the melting crucible, the creep properties of the samples were equivalent. Meanwhile, TMS-238 melted in a CaO crucible exhibited better oxidation resistance. Although the composition of the oxide scale was almost the same, the sample melted in an Al2O3 crucible had its oxide scale spalled, while a continuous oxide scale was formed on the sample melted in a CaO crucible. Dissolved Ca capturing S as CaS and preventing segregation of S at the metal-oxide interface is a possible reason for the improvement of the oxide scale adhesiveness. The results indicated that melting in a CaO crucible can improve the oxidation resistance of the original superalloys while maintaining their creep properties.
Journal Article
Scientific and Human Errors in a Snow Model Intercomparison
2021
Twenty-seven models participated in the Earth System Model–Snow Model Intercomparison Project (ESM-SnowMIP), the most data-rich MIP dedicated to snow modeling. Our findings do not support the hypothesis advanced by previous snow MIPs: evaluating models against more variables and providing evaluation datasets extended temporally and spatially does not facilitate identification of key new processes requiring improvement to model snow mass and energy budgets, even at point scales. In fact, the same modeling issues identified by previous snow MIPs arose: albedo is a major source of uncertainty, surface exchange parameterizations are problematic, and individual model performance is inconsistent. This lack of progress is attributed partly to the large number of human errors that led to anomalous model behavior and to numerous resubmissions. It is unclear how widespread such errors are in our field and others; dedicated time and resources will be needed to tackle this issue to prevent highly sophisticated models and their research outputs from being vulnerable because of avoidable human mistakes. The design of and the data available to successive snow MIPs were also questioned. Evaluation of models against bulk snow properties was found to be sufficient for some but inappropriate for more complex snow models whose skills at simulating internal snow properties remained untested. Discussions between the authors of this paper on the purpose of MIPs revealed varied, and sometimes contradictory, motivations behind their participation. These findings started a collaborative effort to adapt future snow MIPs to respond to the diverse needs of the community.
Journal Article
Topological Insulators and Topological Superconductors
by
Bernevig, B. Andrei
,
Hughes, Taylor L
in
Adiabatic theorem
,
Aharonov–Bohm effect
,
Canonical commutation relation
2013,2016
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
A Tectonic Origin for the Largest Marsquake Observed by InSight
by
Charalambous, Constantinos
,
Liu, Jianjun
,
Stott, Alexander
in
[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]
,
[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology
,
[SDU.STU.TE] Sciences of the Universe [physics]/Earth Sciences/Tectonics
2023
The S1222a marsquake detected by InSight on 4 May 2022 was the largest of the mission, at MwMa${M}_{w}^{Ma}$4.7. Given its resemblance to two other large seismic events (S1000a and S1094b), which were associated with the formation of fresh craters, we undertook a search for a fresh crater associated with S1222a. Such a crater would be expected to be ∼300 m in diameter and have a blast zone on the order of 180 km across. Orbital images were targeted and searched as part of an international, multi‐mission effort. Comprehensive analysis of the area using low‐ and medium‐resolution images reveals no relevant transient atmospheric phenomena and no fresh blast zone. High‐resolution coverage of the epicentral area from most spacecraft are more limited, but no fresh crater or other evidence of a new impact have been identified in those images either. We thus conclude that the S1222a event was highly likely of tectonic origin. Plain Language Summary During its time on Mars, NASA's InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission recorded over 1,300 seismic events, known as “marsquakes.” Of these, a number were identified as coming from meteoroid impact cratering events on the surface. The largest event identified by InSight, labeled S1222a, bore some similarities to two large impact events recorded earlier in the mission. In order to investigate whether the S1222a event might also have been caused by an impact event, we undertook a comprehensive search of the region in which the marsquake occurred. We did not identify any fresh craters in the area, implying that the marsquake was likely caused by geological processes. Key Points The S1222a marsquake detected by InSight on 4 May 2022 somewhat resembled previous impact‐generated events We performed an image search in the estimated source region, using data from multiple Mars orbiter missions No new impact crater has been discovered in this area, pointing to a tectonic origin for the quake
Journal Article
Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability
2015
The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability.
Journal Article
Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic
2020
The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO
2
) emissions. Here we present daily estimates of country-level CO
2
emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO
2
emissions (−1551 Mt CO
2
) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.
The COVID-19 pandemic has stopped many human activities, which has had significant impact on emissions of greenhouse gases. Here, the authors present daily estimates of country-level CO
2
emissions for different economic sectors and show that there has been a 8.8% decrease in global CO2 emissions in the first half of 2020.
Journal Article