Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
51
result(s) for
"SCMV"
Sort by:
Comparative Analysis of Sugar Metabolites and Their Transporters in Sugarcane Following Sugarcane mosaic virus (SCMV) Infection
by
Akbar, Sehrish
,
Yuan, Yuan
,
Zhang, Muqing
in
Biological Transport
,
Biosynthesis
,
Carbohydrates
2021
Sugarcane mosaic virus (SCMV) is one of the major pathogens of sugarcane. SCMV infection causes dynamic changes in plant cells, including decreased photosynthetic rate, respiration, and sugar metabolism. To understand the basics of pathogenicity mechanism, we performed transcriptome and proteomics analysis in two sugarcane genotypes (Badila: susceptible to SCMV and B-48: SCMV resistant). Using Saccharum spontaneum L. genome as a reference, we identified the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) that participate in sugar metabolism, transport of their metabolites, and Carbohydrate Activating enZYmes (CAZymes). Sequencing data revealed 287 DEGs directly or indirectly involved in sugar metabolism, transport, and storage, while 323 DEGs are associated with CAZymes. Significant upregulation of glucose, sucrose, fructose, starch, and SWEET-related transcripts was observed in the Badila after infection of SCMV. B-48 showed resistance against SCMV with a limited number of sugar transcripts up-regulation at the post-infection stage. For CAZymes, only glycosyltransferase (GT)1 and glycosyl hydrolase (GH)17 were upregulated in B-48. Regulation of DEGs was analyzed at the proteomics level as well. Starch, fructose, glucose, GT1, and GH17 transcripts were expressed at the post-translational level. We verified our transcriptomic results with proteomics and qPCR data. Comprehensively, this study proved that Badila upregulated sugar metabolizing and transporting transcripts and proteins, which enhance virus multiplication and infectionl.
Journal Article
ZmmiR398b negatively regulates maize resistance to sugarcane mosaic virus infection by targeting ZmCSD2/4/9
2024
MicroRNAs (miRNAs) are widely involved in various biological processes of plants and contribute to plant resistance against various pathogens. In this study, upon sugarcane mosaic virus (SCMV) infection, the accumulation of maize (Zea mays) miR398b (ZmmiR398b) was significantly reduced in resistant inbred line Chang7‐2, while it was increased in susceptible inbred line Mo17. Degradome sequencing analysis coupled with transient co‐expression assays revealed that ZmmiR398b can target Cu/Zn‐superoxidase dismutase2 (ZmCSD2), ZmCSD4, and ZmCSD9 in vivo, of which the expression levels were all upregulated by SCMV infection in Chang7‐2 and Mo17. Moreover, overexpressing ZmmiR398b (OE398b) exhibited increased susceptibility to SCMV infection, probably by increasing reactive oxygen species (ROS) accumulation, which were consistent with ZmCSD2/4/9‐silenced maize plants. By contrast, silencing ZmmiR398b (STTM398b) through short tandem target mimic (STTM) technology enhanced maize resistance to SCMV infection and decreased ROS levels. Interestingly, copper (Cu)‐gradient hydroponic experiments demonstrated that Cu deficiency promoted SCMV infection while Cu sufficiency inhibited SCMV infection by regulating accumulations of ZmmiR398b and ZmCSD2/4/9 in maize. These results revealed that manipulating the ZmmiR398b‐ZmCSD2/4/9‐ROS module provides a prospective strategy for developing SCMV‐tolerant maize varieties. The ZmmiR398b‐ZmCSD2/4/9‐ROS module regulates maize resistance to sugarcane mosaic virus (SCMV) infection and provides a prospective strategy for developing SCMV‐tolerant maize varieties.
Journal Article
Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya
by
Wamaitha, Mwathi Jane
,
Garcia-Ruiz, Hernan
,
Wanjala, Bramwel W.
in
Amino Acid Sequence
,
Biomedical and Life Sciences
,
Biomedicine
2018
Background
Maize lethal necrosis is caused by a synergistic co-infection of
Maize chlorotic mottle virus
(MCMV) and a specific member of the
Potyviridae
, such as
Sugarcane mosaic virus
(SCMV),
Wheat streak mosaic virus
(WSMV) or
Johnson grass mosaic virus
(JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA.
Methods
We used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties.
Results
Complete and partial genomes were assembled for MCMV, SCMV,
Maize streak virus
(MSV) and
Maize yellow dwarf virus
-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus.
Conclusion
Our results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved.
Journal Article
Transcriptomic and Functional Analyses Reveal the Different Roles of Vitamins C, E, and K in Regulating Viral Infections in Maize
2023
Maize lethal necrosis (MLN), one of the most important maize viral diseases, is caused by maize chlorotic mottle virus (MCMV) infection in combination with a potyvirid, such as sugarcane mosaic virus (SCMV). However, the resistance mechanism of maize to MLN remains largely unknown. In this study, we obtained isoform expression profiles of maize after SCMV and MCMV single and synergistic infection (S + M) via comparative analysis of SMRT- and Illumina-based RNA sequencing. A total of 15,508, 7567, and 2378 differentially expressed isoforms (DEIs) were identified in S + M, MCMV, and SCMV libraries, which were primarily involved in photosynthesis, reactive oxygen species (ROS) scavenging, and some pathways related to disease resistance. The results of virus-induced gene silencing (VIGS) assays revealed that silencing of a vitamin C biosynthesis-related gene, ZmGalDH or ZmAPX1, promoted viral infections, while silencing ZmTAT or ZmNQO1, the gene involved in vitamin E or K biosynthesis, inhibited MCMV and S + M infections, likely by regulating the expressions of pathogenesis-related (PR) genes. Moreover, the relationship between viral infections and expression of the above four genes in ten maize inbred lines was determined. We further demonstrated that the exogenous application of vitamin C could effectively suppress viral infections, while vitamins E and K promoted MCMV infection. These findings provide novel insights into the gene regulatory networks of maize in response to MLN, and the roles of vitamins C, E, and K in conditioning viral infections in maize.
Journal Article
Maize Lethal Necrosis disease: review of molecular and genetic resistance mechanisms, socio-economic impacts, and mitigation strategies in sub-Saharan Africa
by
Hearne, Sarah J.
,
Jones, Alan M.
,
Mottaleb, Khondokar Abdul
in
Africa South of the Sahara
,
Agricultural commodities
,
Agricultural production
2022
Background
Maize lethal necrosis (MLN) disease is a significant constraint for maize producers in sub-Saharan Africa (SSA). The disease decimates the maize crop, in some cases, causing total crop failure with far-reaching impacts on regional food security.
Results
In this review, we analyze the impacts of MLN in Africa, finding that resource-poor farmers and consumers are the most vulnerable populations. We examine the molecular mechanism of MLN virus transmission, role of vectors and host plant resistance identifying a range of potential opportunities for genetic and phytosanitary interventions to control MLN. We discuss the likely exacerbating effects of climate change on the MLN menace and describe a sobering example of negative genetic association between tolerance to heat/drought and susceptibility to viral infection. We also review role of microRNAs in host plant response to MLN causing viruses as well as heat/drought stress that can be carefully engineered to develop resistant varieties using novel molecular techniques.
Conclusions
With the dual drivers of increased crop loss due to MLN and increased demand of maize for food, the development and deployment of simple and safe technologies, like resistant cultivars developed through accelerated breeding or emerging gene editing technologies, will have substantial positive impact on livelihoods in the region. We have summarized the available genetic resources and identified a few large-effect QTLs that can be further exploited to accelerate conversion of existing farmer-preferred varieties into resistant cultivars.
Journal Article
Selective Interaction of Sugarcane eIF4E with VPgs from Sugarcane Mosaic Pathogens
2021
Eukaryotic translation initiation factor 4E (eIF4E) plays a key role in the infection of potyviruses in susceptible plants by interacting with viral genome-linked protein (VPg). Sugarcane (Saccharum spp.) production is threatened by mosaic disease caused by Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and Sugarcane streak mosaic virus (SCSMV). In this study, two eIF4Es and their isoform eIF(iso)4E and 4E-binding protein coding genes were cloned from sugarcane cultivar ROC22 and designated SceIF4Ea, SceIF4Eb, SceIF(iso)4E, and ScnCBP, respectively. Real-time quantitative PCR analysis showed different expression profiles of these four genes upon SCMV challenge. A subcellular localization assay showed that SceIF4Ea, SceIF4Eb, SceIF(iso)4E, and ScnCBP were distributed in the nucleus and cytoplasm. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that SceIF4Ea/b and SceIF(iso)4E were selectively employed by different sugarcane mosaic pathogens, i.e., SCMV-VPg interacted with SceIF4Ea/b and SceIF(iso)4E, SrMV-VPg interacted with both SceIF4Eb and SceIF(iso)4E, and SCSMV-VPg interacted only with SceIF(iso)4E. Intriguingly, the BiFC assays, but not the Y2H assays, showed that ScnCBP interacted with the VPgs of SCMV, SrMV, and SCSMV. Competitive interaction assays showed that SCMV-VPg, SrMV-VPg, and SCMV-VPg did not compete with each other to interact with SceIF(iso)4E, and SceIF(iso)4E competed with SceIF4Eb to interact with SrMV-VPg but not SCMV-VPg. This study sheds light on the molecular mechanism of sugarcane mosaic pathogen infection of sugarcane plants and benefits sugarcane breeding against the sugarcane mosaic disease.
Journal Article
Advances in research on maize lethal necrosis, a devastating viral disease
by
Tian, Yiying
,
Ismail, Ragab Gomaa
,
Fan, Zaifeng
in
Biomedical and Life Sciences
,
Life Sciences
,
Maize chlorotic mottle virus (MCMV)
2022
Maize lethal necrosis (MLN) is a devastating disease of maize caused by synergistic infection with maize chlorotic mottle virus (MCMV) and at least one potyvirid (e.g., sugarcane mosaic virus, SCMV). MLN results in leaf necrosis, premature aging, and even whole plant death and can cause up to 100% losses in yield. MLN has emerged worldwide and resulted in serious loss in maize production. Over the past decade, extensive research has been conducted to understand the epidemic and pathogenic mechanisms of MLN. In this review, we summarize recent findings in understanding the biological functions of proteins from both viruses and discuss recent advances in molecular plant-virus interactions, particularly the co-evolutionary arms race between maize anti-viral defense and viral pathogenesis (counter-defense). Based on recent research progress, we discuss how to combine different strategies for enhancing the effectiveness of maize resistance to MCMV/SCMV, and the possible approaches for effective control of MLN.
Journal Article
Identification of ceRNA-vsiRNA-mRNA network for exploring the mechanism underlying pathogenesis of sugarcane mosaic virus in resistant and susceptible maize inbred lines
by
Hao, Kaiqiang
,
Wang, Zhiping
,
Gao, Xinran
in
Biomedical and Life Sciences
,
ceRNA
,
Inbred lines
2023
RNA silencing plays an important role in plant antiviral responses, which trigger the production of virus-derived small interfering RNAs (vsiRNAs). The competing endogenous RNA (ceRNA) hypothesis revealed a unique mechanism in which circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) can interact with small RNAs to regulate the expression of corresponding target mRNAs. Sugarcane mosaic virus (SCMV) infection causes severe economic losses in maize (
Zea mays
L.) production worldwide. This study compared and analyzed characteristics of vsiRNAs derived from SCMV and their target genes in resistant (Chang7-2) and susceptible (Mo17) maize inbred lines through whole-transcriptome RNA sequencing and degradome sequencing. The results showed that 706 transcripts were targeted by 204 vsiRNAs, including 784 vsiRNA-target gene pairs. Furthermore, ceRNA networks of circRNA/lncRNA-vsiRNA-mRNA in response of maize to SCMV infection were obtained, including 3 differentially expressed (DE) circRNAs, 36 DElncRNAs, 105 vsiRNAs, and 342 DEmRNAs in Mo17 plants, and 3 DEcircRNAs, 35 DElncRNAs, 23 vsiRNAs, and 87 DEmRNAs in Chang7-2 plants. Our results also showed that the transcripts of
ZmDCLs
,
ZmAGOs
, and
ZmRDRs
were differentially accumulated in resistant and susceptible maize inbred lines after SCMV infection. These findings provide valuable insights into the relationship between SCMV-derived vsiRNAs and potential ceRNAs fine-tuning the SCMV-maize interaction and offer novel clues to reveal the mechanism underlying the pathogenesis of SCMV.
Journal Article
Characterization of Maize miRNAs in Response to Synergistic Infection of Maize Chlorotic Mottle Virus and Sugarcane Mosaic Virus
by
Fan, Zaifeng
,
Gao, Xinran
,
Zhou, Tao
in
Binding sites
,
Gene Expression Regulation, Plant
,
Genes
2019
The synergistic infection of maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) causes maize lethal necrosis, with considerable losses to global maize production. microRNAs (miRNAs) are conserved non-coding small RNAs that play essential regulatory roles in plant development and environmental stress responses, including virus infection. However, the characterization of maize miRNAs in response to synergistic infection of MCMV and SCMV remains largely unknown. In this study, the profiles of small RNAs from MCMV and SCMV single- and co-infected (S + M) maize plants were obtained by high-throughput sequencing. A total of 173 known miRNAs, belonging to 26 miRNA families, and 49 novel miRNAs were profiled. The expression patterns of most miRNAs in S + M-infected maize plants were similar to that in SCMV-infected maize plants, probably due to the existence of RNA silencing suppressor HC-Pro. Northern blotting and quantitative real-time PCR were performed to validate the accumulation of miRNAs and their targets in different experimental treatments, respectively. The down-regulation of miR159, miR393, and miR394 might be involved in antiviral defense to synergistic infection. These results provide novel insights into the regulatory networks of miRNAs in maize plants in response to the synergistic infection of MCMV and SCMV.
Journal Article
Maize Elongin C interacts with the viral genome-linked protein, VPg, of Sugarcane mosaic virus and facilitates virus infection
2014
The viral genome-linked protein, VPg, of potyviruses is involved in viral genome replication and translation. To determine host proteins that interact with Sugarcane mosaic virus (SCMV) VPg, a yeast two-hybrid screen was used and a maize (Zea mays) Elongin C (ZmElc) protein was identified.
ZmELC transcript was observed in all maize organs, but most highly in leaves and pistil extracts, and ZmElc was present in the cytoplasm and nucleus of maize cells in the presence or absence of SCMV. ZmELC expression was increased in maize tissue at 4 and 6 d post SCMV inoculation. When ZmELC was transiently overexpressed in maize protoplasts the accumulation of SCMV RNA was approximately doubled compared with the amount of virus in control protoplasts.
Silencing ZmELC expression using a Brome mosaic virus-based gene silencing vector (virus-induced gene silencing) did not influence maize plant growth and development, but did decrease RNA accumulation of two isolates of SCMV and host transcript encoding ZmeIF4E during SCMV infection. Interestingly, Maize chlorotic mottle virus, from outside the Potyviridae, was increased in accumulation after silencing ZmELC expression.
Our results describe both the location of ZmElc expression in maize and a new activity associated with an Elc: support of potyvirus accumulation.
Journal Article