Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
7,053
result(s) for
"SEED BANKS"
Sort by:
Direct and indirect effects of temperature and precipitation on alpine seed banks in the Tibetan Plateau
2020
Plant community responses to global environmental change focus primarily on aboveground vegetation; however, the important role of the seed bank is frequently neglected. Specifically, the direct and indirect effects of changes in temperature and precipitation on seed banks remain poorly understood, yet seed banks provide a vital source of ecosystem resilience to global environmental change. We used a structural equation model to explore the direct and indirect effects of temperature, precipitation, and other biotic and abiotic factors on soil seed bank community composition using 1,026 soil seed bank samples from 57 sites along an elevation gradient that served as a space-for-time substitution for changing climate in the Tibetan Plateau. Seed bank richness was negatively correlated with both precipitation and temperature, but neither climate factor affected seed bank density. Temperature was also negatively correlated with vegetation species richness, which was positively correlated with seed bank richness and density. Both precipitation and temperature were positively correlated with soil total N, and total N was negatively correlated with vegetation richness. Both precipitation and temperature were negatively correlated with soil pH, and soil pH was negatively correlated with vegetation richness, but positively correlated with seed bank richness and density. Increasing precipitation and temperature would decrease seed bank diversity through direct effects as well as indirectly by decreasing vegetation diversity. Soil pH and total N emerged as the most important soil abiotic factors for seed bank diversity. Increasing precipitation and temperature under climate change may increase the extinction risk of some species in the seed bank by altering bet-hedging and risk-spreading strategies, which will degrade natural restoration ability and ultimately ecosystem resilience. This research is important because it identifies the potential underlying mechanistic basis of climate change impacts on seed banks through effects of aboveground vegetation and belowground biotic and abiotic factors.
Journal Article
Soil seed bank characteristics at different developmental stages in pine and oak forests and its potential in vegetation restoration
2024
Background and aims
Soil seed bank plays a significant role in the natural recovery and the succession of forest. A large number of natural secondary forests are distributed in the Qining Mountains, China. However, it remains unclear how the soil seed banks develop and influence the recovery of secondary forests.
Methods
We explored the aboveground vegetation and soil seed bank at 27 plots along forest developmental stages of pine and oak forests in the Qinling Mountains. Species composition and abundance of aboveground vegetation as well as seed bank composition and density were surveyed and their correlations with forest developmental stages were determined.
Results
The results showed that the species richness of seed banks was the highest in middle-aged forests, as well as the aboveground vegetation. The seed density and abundance increased with forest developmental stages and varied among different forest types. The similarity between seed banks at different developmental stages of the same forest type was high, as well as aboveground vegetation. The seed bank and aboveground vegetation showed low similarity across the three developmental stages of both forest types, and the persistent soil seed bank did not reflect the changes in aboveground vegetation.
Conclusion
Our findings demonstrate that developmental stages play an important role in the composition of seed banks and aboveground vegetation. Our results also highlight the persistent soil seed bank contributes less to the forest recovery. We can assume that the natural recovery of disturbed natural secondary forests is largely dependent on transient soil seed bank and seed dispersal.
Journal Article
Soil salinity regulates spatial-temporal heterogeneity of seed germination and seedbank persistence of an annual diaspore-trimorphic halophyte in northern China
by
Ye, Xuehua
,
Huang, Zhenying
,
Baskin, Jerry M
in
Abiotic stress tolerance in plants
,
Agricultural research
,
Agriculture
2024
Background and aims
Seed heteromorphism is a plant strategy that an individual plant produces two or more distinct types of diaspores, which have diverse morphology, dispersal ability, ecological functions and different effects on plant life history traits. The aim of this study was to test the effects of seasonal soil salinity and burial depth on the dynamics of dormancy/germination and persistence/depletion of buried trimorphic diaspores of a desert annual halophyte
Atriplex centralasiatica
.
Methods
We investigated the effects of salinity and seasonal fluctuations of temperature on germination, recovery of germination and mortality of types A, B, C diaspores of
A. centralasiatica
in the laboratory and buried diaspores in situ at four soil salinities and three depths. Diaspores were collected monthly from the seedbank from December 2016 to November 2018, and the number of viable diaspores remaining (not depleted) and their germinability were determined.
Results
Non-dormant type A diaspores were depleted in the low salinity “window” in the first year. Dormant diaspore types B and C germinated to high percentages at 0.3 and 0.1 mol L
-1
soil salinity, respectively. High salinity and shallow burial delayed depletion of diaspore types B and C. High salinity delayed depletion time of the three diaspore types and delayed dormancy release of types B and C diaspores from autumn to spring. Soil salinity modified the response of diaspores in the seedbank by delaying seed dormancy release in autum and winter and by providing a low-salt concentration window for germination of non-dormant diaspores in spring and early summer.
Conclusions
Buried trimorphic diaspores of annual desert halophyte
A. centralasiatica
exhibited diverse dormancy/germination behavior in respond to seasonal soil salinity fluctuation. Prolonging persistence of the seedbank and delaying depletion of diaspores under salt stress in situ primarily is due to inhibition of dormancy-break. The differences in dormancy/germination and seed persistence in the soil seedbank may be a bet-hadging strategy adapted to stressful temporal and spatial heterogeneity, and allows
A. centralasiatica
to persist in the unpredictable cold desert enevironment.
Journal Article
Seed priming: state of the art and new perspectives
by
Paparella, S.
,
Araújo, S. S.
,
Carbonera, D.
in
antioxidants
,
bioinformatics
,
Biological treatment
2015
Priming applied to commercial seed lots is widely used by seed technologists to enhance seed vigour in terms of germination potential and increased stress tolerance. Priming can be also valuable to seed bank operators who need improved protocols of ex situ conservation of germplasm collections (crop and native species). Depending on plant species, seed morphology and physiology, different priming treatments can be applied, all of them triggering the so-called ‘pre-germinative metabolism’. This physiological process takes place during early seed imbibition and includes the seed repair response (activation of DNA repair pathways and antioxidant mechanisms), essential to preserve genome integrity, ensuring proper germination and seedling development. The review provides an overview of priming technology, describing the range of physical–chemical and biological treatments currently available. Optimised priming protocols can be designed using the ‘hydrotime concept’ analysis which provides the theoretical bases for assessing the relationship between water potential and germination rate. Despite the efforts so far reported to further improve seed priming, novel ideas and cutting-edge investigations need to be brought into this technological sector of agri-seed industry. Multidisciplinary translational research combining digital, bioinformatic and molecular tools will significantly contribute to expand the range of priming applications to other relevant commercial sectors, e.g. the native seed market.
Journal Article
Resistance and resilience to changing climate and fire regime depend on plant functional traits
by
Miller, Ben P.
,
Fontaine, Joseph B.
,
Lamont, Byron B.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Australia
2014
1. Changing disturbance–climate interactions will drive shifts in plant communities: these effects are not adequately quantified by environmental niche models used to predict future species distributions. We quantified the effects of more frequent fire and lower rainfall – as projected to occur under a warming and drying climate – on population responses of shrub species in biodiverse Mediterranean-climate type shrublands near Eneabba, southwestern Australia. 2. Using experimental fires, we measured the density of all shrub species for four dominant plant functional groups (resprouter/non-sprouter × serotinous/soil seed bank) before and after fire in 33 shrubland sites, covering four post-fire rainfall years and fire intervals from 3–24 years. 3. Generalized linear mixed effects models were used to test our a priori hypotheses of rainfall, fire interval and plant functional type effects on post-fire survival and recruitment. 4. At shortened fire intervals, species solely dependent on seedling recruitment for persistence were more vulnerable to local extinction than were species with both seedling recruitment and vegetative regrowth. Nevertheless, seedling recruitment was essential for population maintenance of resprouting species. Serotinous species were less resilient than soil seed storage species regardless of regeneration mode. Critically, in relation to changing climate, a 20% reduction in post-fire winter rainfall (essential for seedling recruitment) is predicted to increase the minimum inter-fire interval required for self-replacement by 50%, placing many species at risk of decline. 5. Synthesis. Our results highlight the potentially deleterious biodiversity impacts of climate and fire regime change, and underscore weaknesses inherent in studies considering single impact factors in isolation. In fire-prone ecosystems characterized by a projected warming and drying climate, and increasing fire hazard, adaptive approaches to fire management may need to include heightened wildfire suppression and lengthened intervals for prescribed fire to best support the in situ persistence of perennial plant species and of plant biodiversity. This conclusion is at odds with the view that more managed fire may be needed to mitigate wildfire risk as climate warms.
Journal Article
Early bird catches the worm: germination as a critical step in plant invasion
2017
The germination behavior of a plant influences its fitness, persistence, and evolutionary potential, as well as its biotic environment. This can have major effects on the invasive potential of a species. We review the findings of four types of experimental studies comparing basic germination characteristics of invasive versus non-invasive congeners, in their non-native or native distribution range; invasive alien versus native species; and invasive species in their native versus non-native distribution range. Early and/or rapid germination is typical of invasive species rather than their non-invasive congeners, and represents a pre-adaptation from which many invasive and naturalized species benefit. It also occurs more often in invasive than native species, suggesting that competition mitigation or avoidance in the early stages of a plant’s life, via the exploitation of vacant germination niches, might be more useful than a superior competitive ability in novel environments. This is further supported by a tendency of invasive species to germinate earlier and/or faster and have broader germination cues in their non-native than in their native range. It is also supported by broader germination requirements being reported for invasive species than their non-invasive or native congeners. In contrast, high percentage germination is not a consistent predictor of invasiveness, suggesting that the incorporation of a larger fraction of seed production into the soil seed bank rather than high germination is a better (or safer) strategy in novel environments. These patterns indicate that differences in the germination behavior of alien and native species contribute to the invasiveness of many species, although evidence under natural conditions is needed. The role of such differences in the establishment and spread of invasive species in novel environments and their long-term impact on community dynamics requires further study.
Journal Article
Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities
2008
Question: Can seeds in the seed bank be considered as a potential source of material for the restoration of European plant communities including forest, marsh, grassland and heathland? Methods: This study reviews seed bank studies (1990–2006) to determine if they provide useful and reliable results to predict restoration success. We formally selected 102 seed bank studies and analyzed differences between four plant community types in several seed bank characteristics, such as seed density, species richness and similarity between seed bank and vegetation. We also assessed the dominant genera present in the seed bank in each plant community. Results: We observed remarkably consistent trends when comparing seed bank characteristics among community types. Seed density was lowest for grassland and forest communities and highest in marshes, whereas species richness, diversity and evenness of the seed bank community was lowest in heathland and highest in grassland. Similarity between seed bank and vegetation was low in forest, and high in grassland. There was a lot of overlap of the dominant genera of seed bank communities in all studies. Conclusions: The absence of target species and the high dominance of early successional species, in particular Juncus spp., indicate that restoration of target plant communities relying only on seed germination from the seed bank is in most cases not feasible. The exceptions are heathland and early successional plant communities occurring after temporally recurring disturbances. Restoration of plant communities composed of late successional species, such as woody species or herbaceous species typical of woodland or forest rely mainly on seed dispersal and not on in situ germination.
Journal Article
Environment sensing in spring‐dispersed seeds of a winter annual Arabidopsis influences the regulation of dormancy to align germination potential with seasonal changes
by
Dent, Katherine
,
Footitt, Steven
,
Clay, Heather A
in
Abscisic acid
,
Arabidopsis
,
Arabidopsis - drug effects
2014
Seed dormancy cycling plays a crucial role in the lifecycle timing of many plants. Little is known of how the seeds respond to the soil seed bank environment following dispersal in spring into the short‐term seed bank before seedling emergence in autumn. Seeds of the winter annual Arabidopsis ecotype Cvi were buried in field soils in spring and recovered monthly until autumn and their molecular eco‐physiological responses were recorded. DOG1 expression is initially low and then increases as dormancy increases. MFT expression is negatively correlated with germination potential. Abscisic acid (ABA) and gibberellin (GA) signalling responds rapidly following burial and adjusts to the seasonal change in soil temperature. Collectively these changes align germination potential with the optimum climate space for seedling emergence. Seeds naturally dispersed to the soil in spring enter a shallow dormancy cycle dominated by spatial sensing that adjusts germination potential to the maximum when soil environment is most favourable for germination and seedling emergence upon soil disturbance. This behaviour differs subtly from that of seeds overwintered in the soil seed bank to spread the period of potential germination in the seed population (existing seed bank and newly dispersed). As soil temperature declines in autumn, deep dormancy is re‐imposed as seeds become part of the persistent seed bank.
Journal Article
Seed bank bias
2022
A goal in trait-based ecology is to understand and predict plant community responses to environmental change; however, diversity stored within seed banks that may expand or limit these responses is typically overlooked. If seed banks store attributes that are more advantageous or vulnerable under future conditions, they could impact community adaptability to change and disturbance. We explored compositional differences between seed banks and vegetation (i.e., seed bank bias) across a 12-site gradient of increasingly higher and older soil terraces, asking: How do seed banks contribute to taxonomic and functional composition, and what do shifts in seed bank biases along the gradient (i.e., tracking) reveal about the processes driving seed bank variation and its implications for community adaptability? Across the gradient, seed banks stored distinct pools of species that added to species richness but not functional dispersion. Seed banks were generally biased toward short-life histories and “fast” species with small seeds, thinner and more acquisitive roots, and lower root biomass allocation; however, trait means in the seed bank and vegetation sometimes shifted along the gradient, amplifying or reversing these biases. For example, species with higher specific leaf area (tied to rapid resource acquisition) tended to dominate vegetation on lower soil terraces, but were more common in the seed bank on higher terraces—at least when patterns were weighted by species’ relative abundances. Although seed banks were generally characterized by “fast” attributes, observed shifts in seed bank biases across the gradient—particularly in leaf traits—demonstrate that environment can impact stored diversity and, consequently, our expectations for future vegetative turnover. The seed bank bias patterns that we characterized could be the result of many potential processes, including environment- or traitdriven variation in seed bank inputs (seed production, dispersal) or losses (seed desiccation, germination), and may have important implications for a system’s adaptive capacity. Only by integrating seed banks into the functional ecology agenda will we be able to unpack these processes and use seed banks more effectively in both prediction and ecosystem management.
Journal Article
Principles of seed banks and the emergence of complexity from dormancy
by
Blath, Jochen
,
Lennon, Jay T.
,
den Hollander, Frank
in
631/158/2451
,
631/158/670
,
631/181/2468
2021
Across the tree of life, populations have evolved the capacity to contend with suboptimal conditions by engaging in dormancy, whereby individuals enter a reversible state of reduced metabolic activity. The resulting seed banks are complex, storing information and imparting memory that gives rise to multi-scale structures and networks spanning collections of cells to entire ecosystems. We outline the fundamental attributes and emergent phenomena associated with dormancy and seed banks, with the vision for a unifying and mathematically based framework that can address problems in the life sciences, ranging from global change to cancer biology.
Seed banks are generated when individuals enter a dormant state, a phenomenon that has evolved among diverse taxa, but that is also found in stem cells, brains, and tumors. Here, Lennon et al. synthesize the fundamentals of seed-bank theory and the emergence of complex patterns and dynamics in mathematics and the life sciences.
Journal Article